P294

Linispeed Jack Linipower Jack

Options

Jacks with Motors	
Gearmotor — P275 to 27	78
Motor — P279 to 28	31
Hypoid Motor — P28	32
Servo Motor — P28	32
Control Option	
Jack Control System — P283•28	34
LS Counter — P285•28	
Position Sensors — P287 to 29	90
Internal LS — P28	38
Potentiometer — P288•28	39
Stroke Display Meter, Printed Circuit Board, Meter Relay	
Rotary Encoder — P29	90
Others	
Clevis and Trunnion Mounting Adapters ———— P29	
Hand Wheel, Columns ———— P29	92
Safety Caps — P29	93

Bellows

With Gearmotor JWM (Machine Screw Type)

				Jack Gea	r Ratio H	
Model Size	Motor	Gear Ratio		500r/min)	60Hz (18	300r/min)
Model Size	Capacity	Geal Natio	Shaft Speed	Thrust	Shaft Speed	Thrust
			mm/min (mm/s)	kN {kgf}	mm/min (mm/s)	kN {kgf}
JWM005	25W	1/5	216 (3.6)	1.27 {130}	258 (4.3)	1.08 {110}
300000	25**	1/10	108 (1.8)	2.55 {260}	126 (2.1)	2.16 {220}
JWM010	40W	1/5	210 (3.5)	1.76 {180}	258 (4.3)	1.47 {150}
31111010	1011	1/10	108 (1.8)	3.63 {370}	126 (2.1)	2.84 {290}
		1/5	252 (4.2)	4.41 {450}	300 (5.0)	3.63 {370}
		1/10	126 (2.1)	8.92 {910}	150 (2.5)	7.55 {770}
	0.1kW	1/15	84 (1.4)	13.6 {1390}	102 (1.7)	11.3 {1150}
JWM025		1/20	60 (1.0)	18.6 {1900}	78 (1.3)	15.0 {1530}
		1/25	48 (0.8)	23.2 {2370}	60 (1.0)	18.6 {1900}
		1/5	252 (4.2)	8.92 {910}	300 (5.0)	7.45 {760}
	0.2kW	1/10	126 (2.1)	18.6 {1900}	150 (2.5)	15.0 {1530}
		1/15	84 (1.4)	24.5 {2500}	102 (1.7)	23.2 {2370}
		1/5	402 (6.7)	5.88 {600}	480 (8.0)	4.80 {490}
		1/10	198 (3.3)	11.8 {1200}	240 (4.0)	9.80 {1000}
	0.2kW	1/15	132 (2.2)	18.2 {1860}	162 (2.7)	15.2 {1550}
		1/20	102 (1.7)	23.3 {2380}	120 (2.0)	20.3 {2070}
JWM050		1/25	78 (1.3)	29.4 {3000}	96 (1.6)	24.3 {2480}
	0.4kW	1/5	402 (6.7)	12.4 {1270}	480 (8.0)	10.3 {1050}
		1/10	198 (3.3)	25.4 {2590}	240 (4.0)	21.3 {2170}
		1/15	132 (2.2)	37.5 {3830}	162 (2.7)	31.5 {3210}
		1/20	102 (1.7)	49.0 {5000}	120 (2.0)	41.7 {4250}
		1/5	378 (6.3)	13.2 {1350}	450 (7.5)	11.0 {1120}
		1/10	186 (3.1)	27.0 {2760}	228 (3.8)	22.7 {2320}
	0.4kW	1/15	126 (2.1)	40.1 {4090}	150 (2.5)	33.5 {3420}
		1/20	96 (1.6)	53.0 {5410}	114 (1.9)	44.4 {4530}
JWM100		1/25	78 (1.3) 60 (1.0)	67.1 {6850} 80.2 {8180}	90 (1.5) 78 (1.3)	55.3 {5640} 67.1 {6850}
		1/50	60 (1.0) 378 (6.3)	24.9 {2540}	78 (1.3) 450 (7.5)	20.8 {2120}
	0.75kW	1/10	186 (3.1)	49.8 {5080}	228 (3.8)	42.2 {4310}
		1/15	126 (2.1)	74.8 {7630}	150 (2.5)	62.8 {6410}
		1/13	96 (1.6)	98.0 {10000}	114 (1.9)	83.4 {8510}
		1/20	378 (6.3)	12.1 {1230}	450 (7.5)	10.0 {1020}
		1/10	186 (3.1)	24.6 {2510}	228 (3.8)	20.7 {2110}
		1/15	126 (2.1)	36.5 {3720}	150 (2.5)	30.5 {3110}
	0.4kW	1/20	96 (1.6)	48.2 {4920}	114 (1.9)	40.4 {4120}
		1/25	78 (1.3)	61.1 {6230}	90 (1.5)	50.2 {5120}
JWM150		1/30	60 (1.0)	69.9 {7130}	78 (1.3)	61.1 {6230}
31111130		1/5	378 (6.3)	22.6 {2310}	450 (7.5)	18.9 {1930}
		1/10	186 (3.1)	45.3 {4620}	228 (3.8)	38.4 {3920}
	0.75kW	1/15	126 (2.1)	67.9 {6930}	150 (2.5)	57.1 {5830}
		1/20	96 (1.6)	91.5 {9340}	114 (1.9)	75.9 {7740}
		1/25	78 (1.3)	114 {11660}	90 (1.5)	94.6 {9650}
		1/5	450 (7.5)	18.9 {1930}	540 (9.0)	15.7 {1600}
		1/10	228 (3.8)	37.7 {3850}	270 (4.5)	31.9 {3260}
	0.75kW	1/15	150 (2.5)	56.6 {5780}	180 (3.0)	47.5 {4850}
		1/20	114 (1.9)	76.3 {7790}	138 (2.3)	63.2 {6450}
IMMADOO		1/25	90 (1.5)	95.2 {9710}	108 (1.8)	78.8 {8040}
JWM200		1/5	450 (7.5)	37.9 {3870}	540 (9.0)	31.5 {3220}
		1/10	228 (3.8)	76.3 {7790}	270 (4.5)	63.2 {6450}
	1.5kW	1/15	150 (2.5)	114 {11640}	180 (3.0)	95.1 {9710}
		1/20	114 (1.9)	151 {15490}	138 (2.3)	126 {12900}
		1/25	90 (1.5)	189 {19350}	108 (1.8)	158 {16160}

^{*} Other shaft speeds and thrusts also available.

^{*} Values in striped cells ///////// indicate thrust rates that exceed allowable capacities. Be sure to adjust thrust to below these rates.

^{*} These thrust rates do not take allowable buckling rates into account. Consider as necessary.

With Gearmotor JWB (Ball Screw Type)

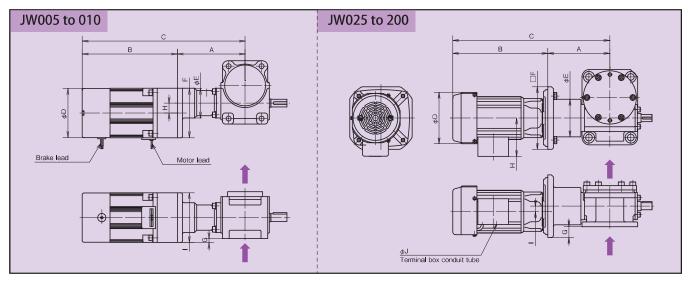
				Jack Gear Ratio H								
Mode	J Cizo	Motor	Gear Ratio	50Hz (15	00r/min)	60Hz (18	300r/min)					
Mode	3126	Capacity	Geal Natio	Shaft Speed	Thrust	Shaft Speed	Thrust					
				mm/min (mm/s)	kN {kgf}	mm/min (mm/s)	kN {kgf}					
JWB	005	25W	1/5	270 (4.5)	2.55 {260}	318 (5.3)	2.16 {220}					
JVVD	003	2300	1/10	138 (2.3)	4.90 {500}	162 (2.7)	4.21 {430}					
JWB	010	40W	1/5	264 (4.4)	4.12 {420}	318 (5.3)	3.43 {350}					
JVVD	010	4000	1/10	132 (2.2)	8.62 {880}	162 (2.7)	6.66 {680}					
			1/5	402 (6.7)	8.23 {840}	480 (8.0)	6.86 {700}					
JWB025	0.1kW	1/10	198 (3.3)	16.6 {1690}	240 (4.0)	14.0 {1430}						
		1/15	132 (2.2)	24.5 {2500}	162 (2.7)	20.9 {2130}						
		0.2kW	1/5	402 (6.7)	16.6 {1690}	480 (8.0)	13.7 {1400}					
		0.2kW	1/5	498 (8.3)	13.6 {1390}	600 (10)	11.3 {1150}					
IW/P	JWB050		1/10	252 (4.2)	28.3 {2890}	300 (5.0)	22.8 {2330}					
300000		1/15	168 (2.8)	42.5 {4340}	198 (3.3)	35.4 {3610}						
		0.4kW	1/5	498 (8.3)	29.1 {2967}	600 (10)	24.1 {2461}					
			1/5	450 (7.5)	31.8 {3240}	540 (9.0)	26.4 {2690}					
JWB	100	0.4kW	1/10	228 (3.8)	64.6 {6590}	270 (4.5)	54.2 {5530}					
3000			1/15	150 (2.5)	95.6 {9760}	180 (3.0)	80.2 {8180}					
		0.75kW	1/5	450 (7.5)	59.5 {6070}	540 (9.0)	49.6 {5060}					
			1/5	600 (10)	23.8 {2430}	720 (12)	19.7 {2010}					
		0.4kW	1/10	300 (5.0)	48.4 {4940}	360 (6.0)	40.7 {4150}					
		0.487	1/15	198 (3.3)	71.7 {7320}	240 (4.0)	60.1 {6130}					
JWB	150		1/20	150 (2.5)	95.0 {9690}	180 (3.0)	79.5 {8110}					
			1/5	600 (10)	44.6 {4550}	720 (12)	37.2 {3800}					
		0.75kW	1/10	300 (5.0)	89.2 {9100}	360 (6.0)	75.6 {7710}					
			1/15	198 (3.3)	134 {13650}	240 (4.0)	112 {11470}					
			1/5	600 (10)	44.0 {4490}	720 (12)	36.6 {3730}					
		0.75kW	1/10	300 (5.0)	87.7 {8950}	360 (6.0)	74.4 {7590}					
JWB	200	0.7 JKVV	1/15	198 (3.3)	132 {13440}	240 (4.0)	111 {11290}					
3440	200		1/20	150 (2.5)	177 {18110}	180 (3.0)	147 {14990}					
		1.5kW	1/5	600 (10)	88.1 {8990}	720 (12)	73.4 {7490}					
		1.2644	1/10	300 (5.0)	177 {18110}	360 (6.0)	147 {14990}					

With Gearmotor JWH (High Lead Ball Screw Type)

				Jack Gea	r Ratio H		
Model Size	Motor	Gear Ratio	50Hz (15	00r/min)	60Hz(18	(00r/min	
Model Size	Capacity	Gear Natio	Shaft Speed	Thrust	Shaft Speed	Thrust	
			mm/min (mm/s)	kN {kgf}	mm/min (mm/s)	kN {kgf}	
JWH010	40W	1/5	1200 (20)	0.98 {100}	1440 (24)	0.88 {90}	
JVVIIOTO	4000	1/10	600 (10)	2.16 {220}	720 (12)	1.67 {170}	
JWH025	0.1kW	1/5	1260 (21)	2.74 {280}	1500 (25)	2.25 {230}	
	0.1600	1/10	600 (10)	5.49 {560}	780 (13)	4.70 {480}	
JVVHUZJ	0.2kW	1/5	1260 (21)	5.49 {560}	1500 (25)	4.61 {470}	
	U.ZKVV	1/10	600 (10)	11.5 {1170}	780 (13)	9.31 {950}	
	0.2kW	1/5	1260 (21)	5.78 {590}	1500 (25)	4.80 {490}	
JWH050		1/10	600 (10)	12.1 {1230}	780 (13)	9.70 {990}	
7001020	0.4kW	1/5	1260 (21)	12.3 {1260}	1500 (25)	10.2 {1040}	
		1/10	600 (10)	25.1 {2560}	780 (13)	21.1 {2150}	
	0.4kW	1/5	1200 (20)	12.3 {1250}	1440 (24)	10.2 {1040}	
JWH100	0.4800	1/10	600 (10)	25.0 {2550}	720 (12)	21.0 {2140}	
JVVIIIOO	0.75kW	1/5	1200 (20)	22.9 {2340}	1440 (24)	19.2 {1960}	
	0.73KVV	1/10	600 (10)	46.0 {4690}	720 (12)	39.0 {3980}	
	0.4kW	1/5	1200 (20)	12.3 {1250}	1440 (24)	10.2 {1040}	
JWH150	0.4800	1/10	600 (10)	25.0 {2550}	720 (12)	21.0 {2140}	
JANUISO	0.75kW	1/5	1200 (20)	22.9 {2340}	1440 (24)	19.2 {1960}	
	0.73800	1/10	600 (10)	46.0 {4690}	720 (12)	39.0 {3980}	
JWH200	0.75kW	1/5	1200 (20)	22.6 {2310}	1440 (24)	18.9 {1930}	
JVV 11200	0.73800	1/10	600 (10)	45.3 {4620}	720 (12)	38.4 {3920}	

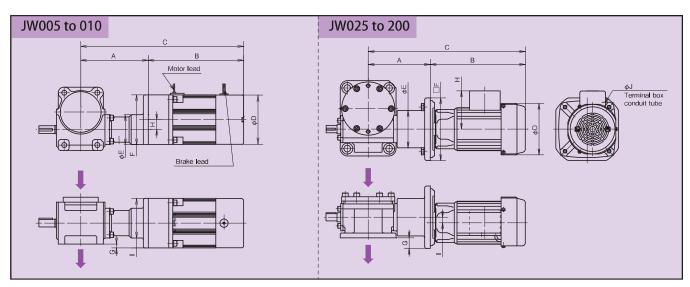
: Standard : Option

: Made-to-Order


^{*} Other shaft speeds and thrusts also available.

^{*} Values in striped cells /////// indicate thrust rates that exceed allowable capacities. Be sure to adjust thrust to below these rates.

^{*} These thrust rates do not take allowable buckling rates into account. Consider as necessary.


Dimensions for Motored Jacks

Standard Gearmotor Mounting

Note) For standard (US, DS) and rotation prevention types (UM, DM), screw shafts will lift in the direction of \implies with normal wiring. For travel nut types (UR,DR), nuts will lift in the direction of \implies with normal wiring.

Gearmotor Mounting on the Opposite Side

Note) For standard (US, DS) and rotation prevention types (UM, DM), screw shafts will lift in the direction of with normal wiring. For travel nut types (UR,DR), nuts will lift in the direction of with normal wiring.

Unit: mm

Frame Size	Motor Weight	Α	В	С	D	Е	F	G	Н	I	J
JW005	25W	106	160	266	84	60	85	15	15	80	_
JW010	40W	123	188	311	93	54	90	7	18	90	_
IMOSE	0.1kW	144	242	386	140	93	170	40	105	15	12
JW025	0.2kW	144	259	403	140	93	170	40	105	15	12
JW050	0.2kW	169	259	428	140	102	170	29	105	15	12
70000	0.4kW	191	301	492	140	102	200	44	105	18	12
JW100	0.4kW	207	301(323)	508(530)	140	131	200	44	105	18(23)	12
J V V 1 O O	0.75kW	207	353	558	158	131	200	44	114	23	12
JW150	0.4kW	211	301(323)	512(534)	140	131	200	30	105	18(23)	12
700120	0.75kW	211	353	564	158	131	200	30	114	23	12
JW200	0.75kW	231	353	584	158	144	200	15	114	23	12
JVV 200	1.5kW	246	461	707	198	150	280	55	143	27	27

^{*()} assumes 1/30 rpm.

Product Information

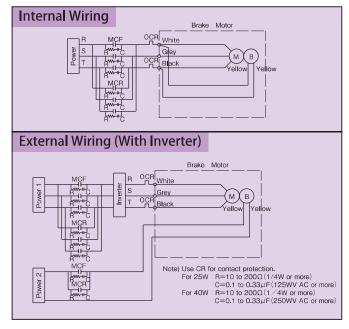
Standard Gearmotor Specialized Gearmotor

Output	25W to 40W	0.1kW to 1.5kW				
Model	With Brake/Totally Enclosed					
Voltage	200/200/220V					
Frequency	50/60/60Hz					
Pole	4P					
Phase	3 Ph	ase				
Protection	IP 20	IP44				
Rating	SI (Continuous)					
Insulation Class	E (F:0.75 to 1.5kW)					

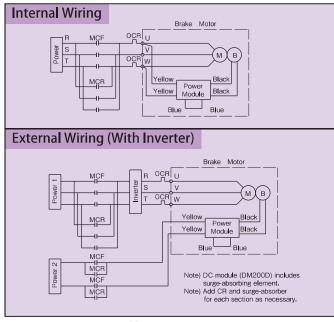
Specifications	25W to 40W	0.1kW to 0.4kW	0.75kW to 1.5kW
Inverter Motor	_	0	0
400V Class Voltage	△*	0	0
Special Voltage	_	0	0
Global Use (CCC,CE,UL)	△*	0	_
One touch brake manual release	_	0	0
Manual shaft	_	0	0
Rotary encoder	_	0	0
* October 11: To be 11:	·	·	·

^{*} Contact to Tsubaki.

Motor current value and brake current value


	Motor c	urrent valu	e (A)	Brake	Brake current value (A)			
Motor	200V 50Hz	200V 60Hz	220V 60Hz	model No.	200V 50Hz	200V 60Hz	220V 60Hz	
4P - 25W	0.25	0.22	0.23		0.03	0.03	0.03	
4P - 40W	0.31	0.29	0.28		0.07	0.07	0.08	
4P - 0.1 kW	0.63	0.57	0.58	SLB01	0.178	0.178	0.178	
4P - 0.2 kW	1.2	1.1	1.1	SLB02	0.178	0.178	0.178	
4P - 0.4kW	2.3	2.0	2.0	SLB04	0.232	0.232	0.232	
4P - 0.75kW	4.0	3.5	3.4	SLB07	0.272	0.272	0.273	
4P - 1.5 kW	6.8	6.4	6.0	SLB15	0.289	0.289	0.289	

Note) 1. The above values are the rated current values of motors and brakes.


- They are given for reference because they may differ according to the actually acting thrust, jack efficiency, etc.
- 2. The rated motor current values do not include brake current values.
- 3. The brake current values show the values on the secondary side of the power supply module (0.1kW up to 1.5kW).

Circuit Diagrams

Circuit Diagrams for 25 to 40W

Circuit Diagrams for 0.1 to 1.5kW

With Motor JWM (Machine Screw Type)

			Jack Gear Ratio H										
Frame Size	Motor	50Hz(15	600r/min)	60Hz(1800r/min)									
1141116 3126	Capacity	Shaft Speed mm/min (mm/s)	Thrust kN {kgf}	Shaft Speed mm/min (mm/s)	Thrust kN {kgf}								
	0.2kW	1260 (21)	1.96 {200}	1500 (25)	1.66 {170}								
JWM025	0.4kW	1260 (21)	4.02 {410}	1500 (25)	3.33 {340}								
JVV1V1U25	0.75kW	1260 (21)	7.55 {770}	1500 (25)	6.27 {640}								
	1.5kW	1260 (21)	10.0 {1020}	1500 (25)	8.33 {850}								
JWM050	0.75kW	1980 (33)	4.98 {508}	2400 (40)	4.12 {420}								
3441030	1.5kW	1980 (33)	9.80 {1000}	2400 (40)	8.23 {840}								
JWM100	2.2kW	1860 (31)	15.5 {1580}	2280 (38)	12.8 {1310}								
JVVIVITOO	3.7kW	1860 (31)	19.6 {2000}	2280 (38)	16.4 {1670}								
JWM150	2.2kW	1860 (31)	14.0 {1430}	2280 (38)	11.7 {1190}								
700101120	3.7kW	1860 (31)	19.8 {2020}	2280 (38)	16.4 {1670}								
JWM200	2.2kW	2280 (38)	11.7 {1190}	2700 (45)	9.70 {990}								
344141200	3.7kW	2280 (38)	19.7 {2010}	2700 (45)	16.4 {1670}								

With Motor JWB (Ball Screw Type)

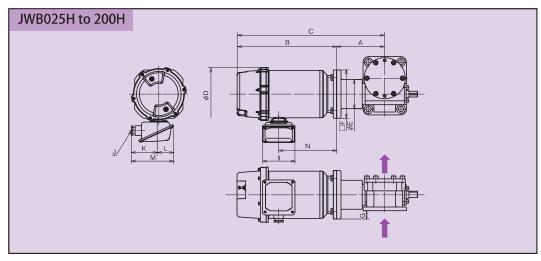
		Jack Gear Ratio H									
Frame Size	Motor	50Hz(15	500r/min)	60Hz(1800r/min)							
1141116 3126	Capacity	Shaft Speed mm/min (mm/s)	Thrust kN {kgf}	Shaft Speed mm/min (mm/s)	Thrust kN {kgf}						
	0.2kW	1980 (33)	3.72 {380}	2400 (40)	3.13 {320}						
JWB025	0.4kW	1980 (33)	7.45 {760}	2400 (40)	6.27 {640}						
JWBUZS	0.75kW	1980 (33)	14.0 {1430}	2400 (40)	11.7 {1190}						
	1.5kW	1980 (33)	24.4 {2490}	2400 (40)	20.0 {2050}						
JWB050	0.75kW	2520 (42)	11.6 {1180}	3000 (50)	9.60 {980}						
JWBUSU	1.5kW	2520 (42)	22.9 {2340}	3000 (50)	19.1 {1950}						
JWB100	2.2kW	2280 (38)	36.9 {3770}	2700 (45)	30.8 {3140}						
JWBTOO	3.7kW	2280 (38)	59.5 {6080}	2700 (45)	50.3 {5140}						
JWB150	2.2kW	3000 (50)	27.7 {2830}	3600 (60)	23.0 {2350}						
JWDIOU	3.7kW	3000 (50)	46.6 {4750}	3600 (60)	38.7 {3950}						
JWB200	2.2kW	3000 (50)	27.2 {2780}	3600 (60)	22.6 {2310}						
JVV B200	3.7kW	3000 (50)	45.8 {4670}	3600 (60)	38.1 {3890}						

With Motor JWH (High Lead Ball Screw Type)

		Jack Gear Ratio H									
Frame Size	Motor	50Hz(15	600r/min)	60Hz(1800r/min)							
1141116 3126	Capacity	Shaft Speed mm/min (mm/s)	Thrust kN {kgf}	Shaft Speed mm/min (mm/s)	Thrust kN {kgf}						
	0.4kW	6240 (104)	2.45 {250}	7500 (125)	2.06 {210}						
JWH025	0.75kW	6240 (104)	4.70 {480}	7500 (125)	3.92 {400}						
	1.5kW	6240 (104)	9.31 {950}	7500 (125)	7.74 {790}						
JWH050	0.75kW	6240 (104)	4.90 {500}	7500 (125)	4.12 {420}						
JANHOOO	1.5kW	6240 (104)	9.70 {990}	7500 (125)	8.13 {830}						
JWH100	2.2kW	6000 (100)	14.3 {1460}	7200 (120)	11.9 {1210}						
JWHIOO	3.7kW	6000 (100)	24.0 {2450}	7200 (120)	20.0 {2040}						
JWH150	2.2kW	6000 (100)	14.3 {1460}	7200 (120)	11.9 {1210}						
JANU 120	3.7kW	6000 (100)	24.0 {2450}	7200 (120)	20.0 {2040}						
11/1/1200	2.2kW	6000 (100)	14.0 {1430}	7200 (120)	11.7 {1190}						
JWH200	3.7kW	6000 (100)	23.6 {2410}	7200 (120)	19.7 {2010}						

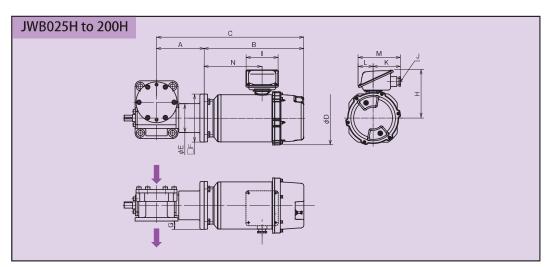
: Standard : Rush Order : Made-to-Order

^{*} Other shaft speeds and thrusts also available.


* Values in striped cells ////// indicate thrust rates that exceed allowable capacities. Be sure to adjust thrust to below these rates.

 $^{^{\}ast}$ These thrust rates do not take allowable buckling rates into account. Consider as necessary.

^{*} As for worm ratio L, consult Tsubakimoto chain.


Dimensions for Motored Jacks

Standard motor Mounting

Note) For standard (US, DS) and rotation prevention types (UM, DM), screw shafts will lift in the direction of 🕽 with normal wiring. For travel nut types (UR,DR), nuts will lift in the direction of with normal wiring.

Motor mounting on the Opposite Side

Note) For standard (US, DS) and rotation prevention types (UM, DM), screw shafts will lift in the direction of \Longrightarrow with normal wiring. For travel nut types (UR,DR), nuts will lift in the direction of \Longrightarrow with normal wiring.

Unit: mm

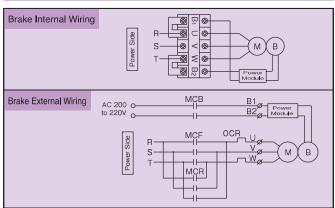
Frame Size	Motor Capacity	Α	В	C	D	Е	F	G	Н		J	K	L	М	N
	0.2kW	132	231	363	132	95	120	15	125	84	SK-14L(PF1/2)	79	45	124	112
JW025	0.4kW	139	253	392	132	95	120	15	125	84	SK-14L(PF1/2)	79	45	124	134
300023	0.75kW	146	289	435	180	102	170	40	166	114	A20C(PF3/4)	106	49	155	145
	1.5kW	146	351	497	194	102	170	40	178	114	A20C(PF3/4)	106	49	155	204
JW050	0.75kW	169	289	458	180	102	170	29	166	114	A20C(PF3/4)	106	49	155	145
30000	1.5kW	169	351	520	194	102	170	29	178	114	A20C(PF3/4)	106	49	155	204
JW100	2.2kW	207	381	588	207	131	200	44	178	114	A25C(PF1)	110	49	159	213
300100	3.7kW	207	414	621	229	144	200	44	189	114	A25C(PF1)	110	49	159	239
JW150	2.2kW	211	381	592	207	131	200	44	178	114	A25C(PF1)	110	49	159	213
300130	3.7kW	211	414	625	229	144	200	44	189	114	A25C(PF1)	110	49	159	239
JW200	2.2kW	231	381	612	207	131	200	15	178	114	A25C(PF1)	110	49	159	213
300200	3.7kW	231	414	645	229	144	200	15	189	114	A25C(PF1)	110	49	159	239

Motor Specifications

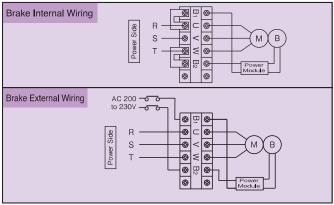
Output	0.2kW to 0.4kW	0.75kW to 3.7kW				
Power Source	200/200/220V					
rower source	400/400/440V					
Frequency	50/60/60Hz					
Pole	4P					
Phase	3 Phase					
Protection	IP:	55				
Rating	S2 30min					
Insulation Class	E (B for 400V)					
With Brake	Electromagnetic Brake (DC, non-excitation type)					

Motor current value and brake current value

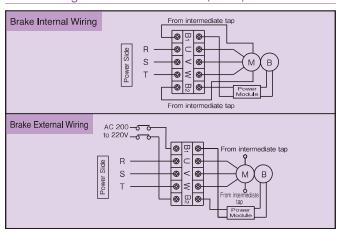
	Motor current value (A)						Brake current value (A)						
Motor	200V 50Hz	200V 60Hz	220V 60Hz	400V 50Hz	400V 60Hz	440V 60Hz	model No.	200V 50Hz	200V 60Hz	220V 60Hz	400V 50Hz	400V 60Hz	440V 60Hz
4P - 0.2 kW	1.3 (4.91)	1.1 (4.68)	1.1 (5.14)	0.63 (2.40)	0.55 (2.22)	0.56 (2.41)	SBH02LP	0.17 0.26	0.17 0.26	0.17 0.28	0.17 0.26	0.17 0.26	0.17 0.28
4P - 0.4 kW	2.4 (11.6)	2.1 (10.2)	2.1 (11.0)	1.2 (5.14)	1.1 (4.88)	1.1 (5.39)	SBH04LP	0.17 0.26	0.17 0.26	0.17 0.28	0.17 0.26	0.17 0.26	0.17 0.28
4P - 0.75 kW	3.9 (24.0)	3.5 (22.0)	3.4 (24.0)	1.9 (12.0)	1.7 (11.0)	1.7 (12.0)	SLB07LP	0.21 0.28	0.21 0.28	0.23 0.31	0.11 0.15	0.11 0.15	0.12 0.16
4P - 1.5 kW	6.5 (49.0)	6.1 (45.0)	5.8 (50.0)	3.2 (24.5)	3.1 (22.5)	2.9 (25.0)	SLB15LP	0.22 0.29	0.22 0.29	0.24 0.32	0.11 0.15	0.11 0.15	0.12 0.16
4P - 2.2 kW	9.4 (63.7)	8.9 (58.2)	8.3 (63.0)	4.7 (31.8)	4.4 (29.1)	4.2 (31.5)	SLB22LP	0.18 0.29	0.18 0.29	0.20 0.32	0.09 0.15	0.09 0.15	0.11 0.16
4P - 3.7 kW	14.8 (104)	14.3 (87.9)	13.2 (98.0)	7.4 (52.0)	7.1 (43.9)	6.6 (49.0)	VNB371K (NB-31186)	0.10 0.30	0.10 0.30	0.10 0.30	0.05 0.15	0.05 0.15	0.05 0.15

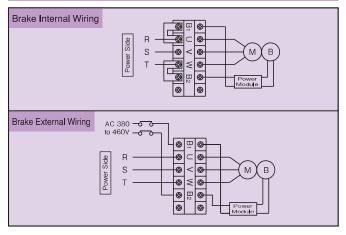

- Note) 1. The above values are rated current values of the motor and brake. A numerical value in parentheses is a start current value of the motor.
 - 2. The rated current values and start current values do not include a brake current value.
 - 3. A DC brake is used as a brake. The upper stage of the brake current value indicates a value on the primary side of the power module, and the lower stage indicates a value on the

 - 4. The above values are references because the rated current values for the power cylinder vary depending on operating conditions.


 5. For simultaneous turnoff of 0.1kW to 0.4kW, 400V class, the voltage is converted to 200V through the motor intermediate tap to be input. For individual turnoff, decrease the voltage to 200 to 220V by a transformer. The capacity of the transformer capacity shall be 90VA or more.
 - 6. For individual turnoff of 0.75kW or more, 400V class, the DC module is applicable for 400V class, therefore, it is unnecessary to decrease the voltage.

Circuit Diagrams


Circuit Diagrams for 0.2 to 0.4kW(200V)

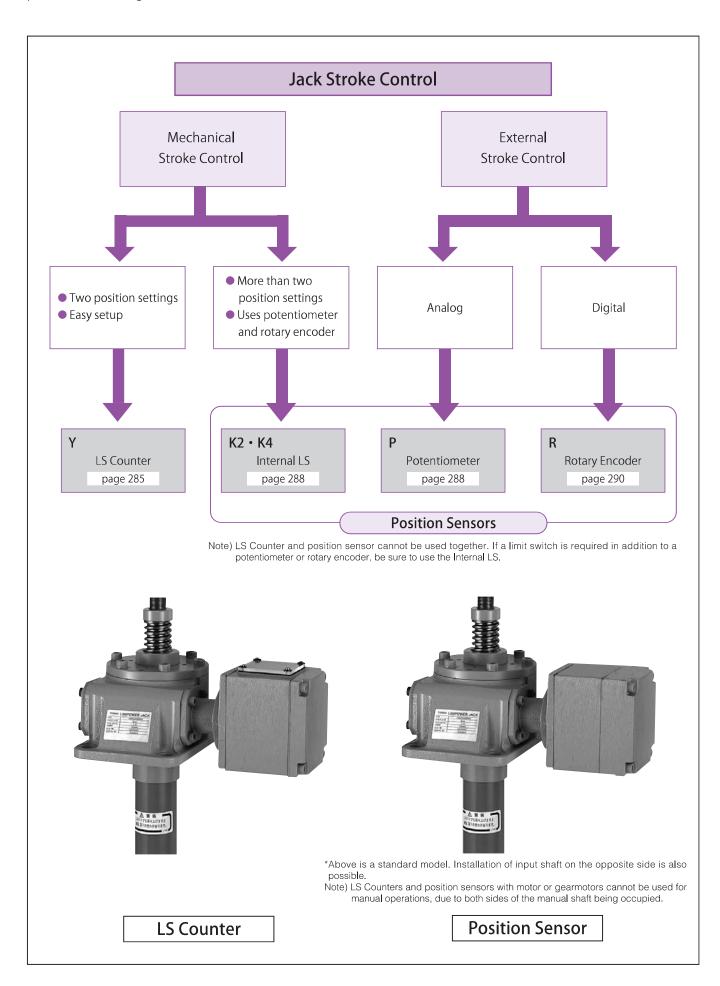

Circuit Diagrams for 0.75 to 3.7kW(200V)

Circuit Diagrams for 0.2 to 0.4kW(400V)

Circuit Diagrams for 0.75 to 3.7kW(400V)

Hypoid Motor Type

- 1. TSUBAKI Hypoid Motor is a space saver.
- 2. To install, the Hypoid Motor can be adjusted at 90° intervals from the input shaft.


Servo Motor Type

- 1. Allows complete control of screw shaft speed.
- 2. Allows accurate control of stopping.
- 3. Allows accurate control of force applied to the jack.
- 4. Maintains load with Servo Lock function.
- 5. Operates multiple jack systems without mechanical connections.
- 6. Compatible with any brand of servo motor.

Jack Control System

We offer various stroke control options to suit your specific needs and conditions. Select from a limit switch, analog device with potentiometer, and digital device with an encoder.

LS Counter

A compact stroke adjusting device as well as a detection unit that combines a cam mechanism with a microswitch.

It can be mounted directly to the input shaft of a jack, and mechanical positioning of upper and lower limits of strokes can easily be performed. Stroke control can be performed only by setting the stop position by the reset button. This economy-type limit switch allows for easy adjustment.

Position Sensor

- (1) Internal LS
- (2) Potentiometer
- (3) Rotary Encoder

3 options are available based on specific needs.

A combination of all 3 is also available.

(1) Internal LS

Can be used in addition to a potentiometer and rotary encoder, and is effective under dusty conditions. 2 or 4 microswitch types available. (K2 or K4)

(2) Potentiometer

Comes with a convenient meter that displays stroke range, and allows full adjustment of stroke. It also measures changes in stroke resistance. Below are options available with a potentiometer.

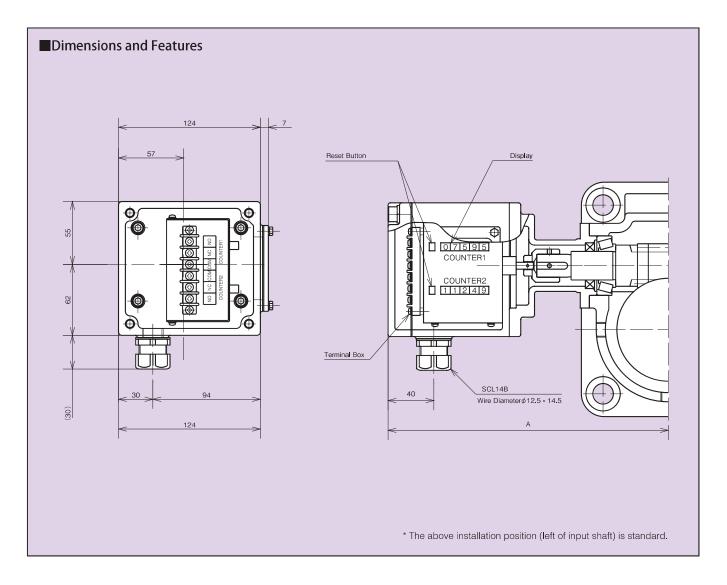
- Stroke display meter (PCB provided)
- Meter relay (PCB provided)

(3) Rotary Encoder

Digital signal of Sequencer or PLC (programmable controller) allows you to control jack stroke.

Open collector and line driver output power sources are available.

The following option is possible with a rotary encoder.


LS Counter

A Limit Switch that uses a mechanical counter to accurately measure and adjust stroke at small intervals. It can be mounted directly to the input shaft. Use two counters and limit switches to control both the upper and lower travel limits. Its one-touch reset button also allows you to stop or reset stroke at any time.

Note) LS Counters cannot be used with a rotary encoder or potentiometer. Rotary encoders and potentiometers must be used with a position detection unit (with internal LS).

Form	Mechanical Counter
No. of Counter Digits	5 (1 Count/Input Shaft Revolution)
Allowable Max. Input Rotation	1800r/min
Limit Switch Used	AVT3254 (Matsushita Electronics)
Contact Composition	1 C (Max. and Min. 1 pt. each)
Power Voltage	250V AC 3A
Ambient Temperature	−5 to 40°C

When the limit switch is working, the numbers displayed on the LS Counter unit changes from 00000 to 99999 (or 99999 to 00000).

Linipower Jack Unit: mm

Frame No.	002	005	010	025	050	100	150	200
A	187	187	211	220	245	271	275	280

Linispeed Jack Unit: mm

Frame No.	SJ030H	SJ050H
Α	277	306

^{*} LS is not factory adjusted and requires initial setting before use.

* Take caution so as to avoid water from contacting internal parts while adjusting.

Setting the LS Counter

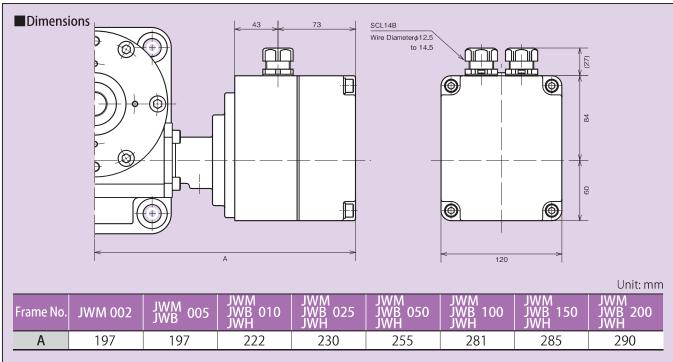
Setting the limit switch is as easy as 1 to 6 below.

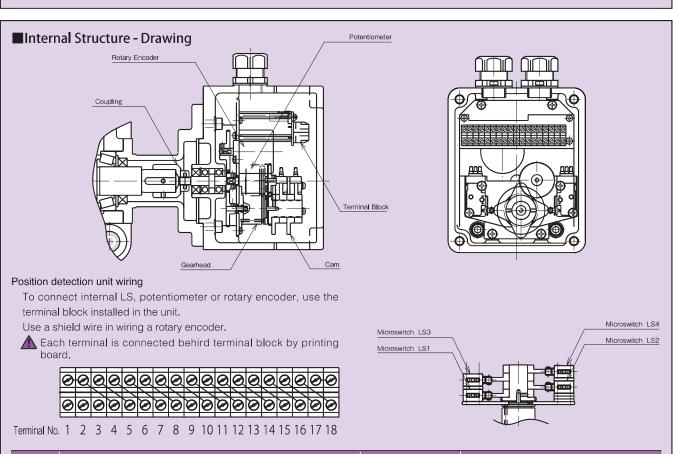
1. Remove cover.

- 2. Set jack at desired maximum and minimum positions manually or by inching.
- 3. Press the counter reset button. (The display will show 00000 and measure from this position.)
- 4. Confirm by moving the jack and then returning it to the set position. Limit switch is now activated.

5. Next, set the jack at another position and confirm in the same manner.

6. Replace cover.




Note) Turning the shaft or travel nut after adjustment will change the setting.

Position Sensors

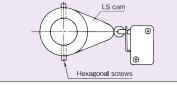
3 kinds of position sensors are available.

- 1 Internal LS (2 or 4)
- 2 Potentiometer
- 3 Rotary Encoder

Option		III(eiiiai L3 (N2,N4)								rote	HUOH	ietei		nc	παι γ ι	LIICOU	CI .	
Symbol	LS	51	LS	52	LS	53	LS	54	Common		Р				F	₹		
Contact	а	b	a	b	a	b	a	b	С	1	2	3	1	2	Z	+5 to 24V	0V	Case
Terminal No.	18	17	5	6	16	15	7	8	4	1	2	3	9	10	11	12	13	14

1 Internal LS

- ●K2······Arrange microswitches LS1 and LS2 as shown below.
- ●K4······Arrange microswitches LS1, LS2, LS3, LS4 as shown below.


	Option Symbol	Exar	nple
Position Detection Unit Internal LS	K2	LS1 LS2	Both ends fixed
Position Detection Unit Internal LS	K4	LS3 LS1	Forward: Fixed at midway position. Fixed end. Return: Fixed at midway position Fixed end.

Model No.	D2VW-5L2A-1M Equivalent
Electric Composition	250V AC 4A (cosφ0.7)
Contact Composition	1C Ø 9

⟨LS Setting⟩

Consider inertia when adjusting LS Cam.

To adjust LS Cam, use a hexagonal wrench and loosen the hexagonal screws (2). *LS is not factory adjusted.

2 Potentiometer

Potentiometers are programmed to activate within effective angles.

Do not rotate the input shaft before installing the screw shaft to your equipment. This can shift the stroke phase.

Note that the output resistance value varies depending on each frame No. and each stroke.

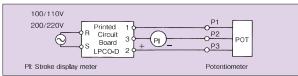
Total resistance value is 1.0 k Ω , however, depending on the stroke, approximately 1/3 of the total resistance value may be output according to the rotation angle, therefore, confirm it before use.

Model No.	CP-30 Equivalent
Maker	Sakae Tsushin Kougyou
Maximum Resistance	1.0kΩ
Rated Power	0.75W
Dielectric Strength Voltage	1000V AC (1min)
Effective Electrical Angle	355°
Effective Mechanical Angle	360° Endless

Potentiometer Control Option 1

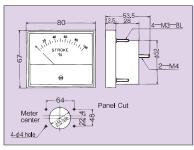
Stroke Display Meter

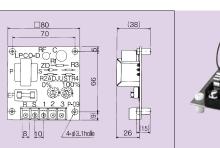
Displays stroke in % by receiving signals from the Printed Circuit Board.


Jack models with a potentiometer should be used.

Model No.	RM-80B(100 μ A DC)Equivalent				
Class	JIS C 1102 2.5				
Exterior	Black Frame				
Scale Used	Maximum Stroke 100%				

^{*} A separate printed board is also required.


Printed Circuit Board

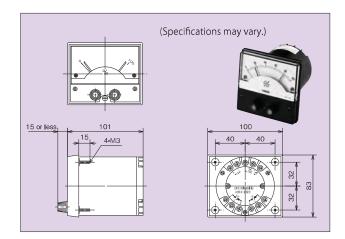

Converts power signals from potentiometer into currents.

In order to adjust the meter, adjust the volume on the printed circuit board. Do not confuse - and +. When adjusting the meter to 100% while stroke is at MIN, replace the terminal 1.2 of the printed circuit board.

Model no. LPCO-D1 (voltage 100/110V 50/60Hz) LPCO-D2 (voltage 200/220V 50/60Hz)

Potentiometer Control Option 2

■Meter Relay

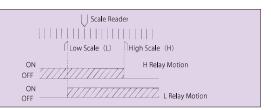

Easy stroke adjustment is possible using the display panel.

(Standard model comes with a metal panel.

Aluminum panels are available upon request.)

Note) For using 4 – 20mA output, designate as "for 4 – 20mA output."

^{*} A separate printed board is also required.


Model No.	NRC-100HL(TSURUGA) or Equivalent
Class	JIS C1102 2.5
Exterior	Black Frame
Scale	Maximum Stroke 100%
Power	100/100V AC 200/220V AC 50/60 Hz
Input	Maximum 100 μ A DC
Output Contact Composition	High, Low both 1C (see graph below)
Contact Capacity	250V AC 3A (cosφ=1)

<u>Use Linipower Jack models with a potentiometer.</u> Take caution so that the input shaft does not rotate while the shaft and the potentiometer are not fully connected. This can shift the phase of the stroke.

Once the maximum and minimum stroke positions are roughly set using the LS, use the meter relay thereafter.

<Relay> (Brake Contact)

Wiring is the same as that for a stroke display meter. However, a separate power source is necessary for the relay. Supply power from the main source used for operation and connect brakes contact in series rather than arranging them in a parallel method.

Product Information

3Rotary Encoder

Rotary encoder specifications						
Model	TS5305N251					
Manufacturer	Tamagawa Seiki Co., Ltd.					
Output pulse number	600P/R					
Output waveform	90° phase difference two-phase square wave + home position output					
Output voltage	H Note 1)					
Output voltage	L 1V or less Note 1)					
Power supply	5 to 24V DC					

Output connection

Signal 1	Signal 2	Signal Z	+5V to 24V	0V	Case
(9)	(10)	(11)	(12)	(13)	(14)

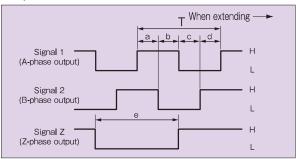
Figures in parentheses indicate terminal No.

The output signal of the standard specification is of an incremental type, however, an absolute type is also available.

The output type in standard specifications is open collector.

If voltage output type is required, see (Note 1) below.

If the specification of line driver output is required, contact us.


Note 1) Due to the open collector output, output signals are obtained when the pull-up resistor is connected.

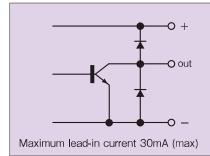
Signal 1 and signal 2 are output voltages of H "(power supply voltage - 1)V or more" and L "1V or less."

For the Z-phase, negative logic applies.

<Reference resistance values> 5V: 220Ω, 12V: 470Ω, 24V: 1kΩ

Output waveform

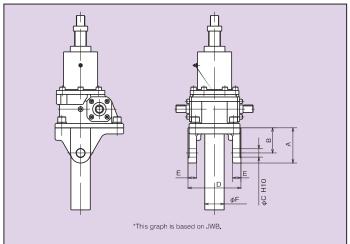
a. b. c. $d = T/4 \pm T/8$ $T/2 \le e \le 3T/2$


- * Best suited to controlling the stroke by a sequencer or programmable controller, etc.

More accurate positioning control is possible in combination with motor speed control by an inverter, etc.

- ① The standard products incorporate an incremental type encoder.
- ② It has been set to output 300 pulses per revolution of the input shaft.
- ③ It is possible to set an accurate home position of the machine in combination with a limit switch because home position output is read out every 600 pulses.
- ④ Do not apply vibration or impact to the rotary encoder because it is precision equipment.
- ⑤ Use shield wire for wiring to the rotary encoder.
- ⑥ As a guide for the distance between the rotary encoder and control panel, a collector current of 20mA should be able to be transmitted approximately 50m (12V pull-up).

For distances other than the above, consult with us.

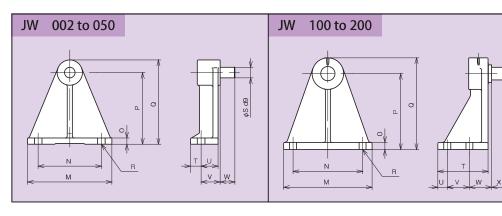

Output circuit

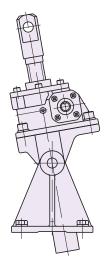
Clevis and Trunnion Mounting Adapters

1. Clevis Mounting Adapter

Convenient for use with opening/closing or tilting devices.

Clevis Measurements


Unit: mm


Frame No.	А	В	C	D	Е	φF
002	75	60	15	64	12	25
005	75	60	15	64	12	25
010	77.5	60	15	86	15	35
025	100	75	20	115	20	45
050	105	75	25	158	25	58
100	145	100	40	201	30	76.3
150	155	105	50	224	44	76.3
200	173	110	63	244	50	89.1

Note)Although standard clevis mounting adapters are for lifting, suspending types are also available. Note)Clevis mounting adapters for rotation prevention are also available in different configurations.

2. Trunnion Mounting Adapter

This trunnion mounting adapter is the same as those for power cylinders.

Trunnion Measurements

Unit: mm

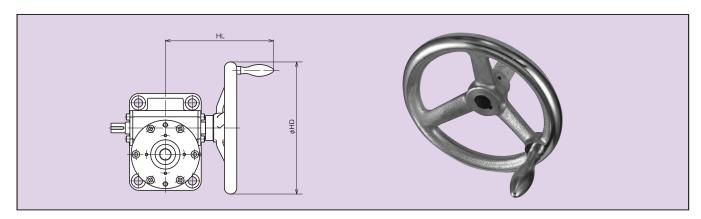
Frame No.	Trunnion Model No.s	М	N	0	Р	Q	R	S	Т	U	V	W	Х
002	LPD300KT-T	130	100	12	100	118.5	2-φ12	15	15	28	30	15	
005	LPD300KT-T	130	100	12	100	118.5	2-φ12	15	15	28	30	15	_
010	LP500L-T	180	130	15	150	178	2-φ18	15	25	40	45	17	_
025	LPTB1000-T	180	130	15	150	178	2-φ18	20	25	40	45	30	
050	LPTB2000-T	200	150	15	170	200	2-φ18	25	25	40	45	35	_
100	LPTB6000-T	280	220	22	240	290	4-φ22	40	159	30	70	70	55
150	LPTB12000-T	360	280	27	300	360	4-φ33	50	195	40	85	85	70
200	LPTB16000-T	400	320	30	380	450	4-φ33	63	210	40	90	90	75

Hand Wheel and Fitting

1. Hand Wheel

Hand wheels are available for Linipower Jack so that it can be easily used for manual operation.

Types of hand wheels and applicable jack frame No. are as follows.


Hand wheels are used for self-lock equipped JWM (Machine Screw Type) only.

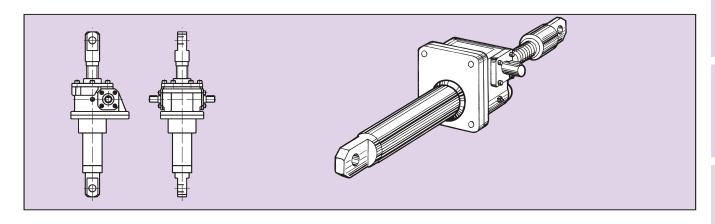
Hand wheels are not available for JWB (ball screw type) and JWH (high lead ball screw type) because they are not equipped with a self-lock with the result that the input shaft may be reversed by a load, where it is dangerous to use the hand wheel. Hand wheel efficiency is determined by the required torque for a specified load and the diameter of the hand wheel via the following equation.

Required Input Torque Hand Wheel Radius Hand Wheel Efficiency =

Hand wheel efficiency equivalent to or below 49N {5kgf} is recommended.

Also, vibration and shock may cause self-lock failure, in which case a brake unit is recommended.

Hand Wheel Measurements Example model No. for order placement: JWM010-NV100


Unit: mm

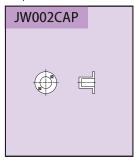
\ Handle Size	JWM00	5-NV80	JWM01	0-NV80	JWM010)-NV100	JWM025	5-NV100	JWM025	5-NV200	JWM050)-NV200	JWM050	-NV280*	JWM100	-NV280*	JWM100	-NV450*
Frame No.	HD	HL	HD	HL	HD	HL	HD	HL	HD	HL	HD	HL	HD	HL	HD	HL	HD	HL
JWM002	80	108	_		_				_		_			_	_	_	_	
JWM005	80	108		_	_	_		_		_	_	_	_	_	_		_	_
JWM010	_		80	122	100	125				_	_		_	_	_			
JWM025				_			100	140	200	198			_	_	_			_
JWM050	_	_	_	_	_	_	_	_	_	_	200	221	280	229	_	_	_	
JWM100	_			_	_	_		_	_	_	_	_	_	_	280	242	450	295
JWM150	_		_		_	_	_	_	_		_		_	_	280	247	450	300
JWM200	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	450	304

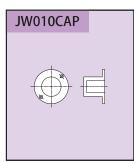
Note) When using in combination with hand wheels marked with an * and clevis fitting, trunnion fitting, hand wheel interferes with trunnion fitting. Separately contact Tsubakimoto Chain.

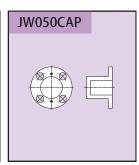
2. Fitting

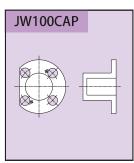
This can be used with Open/Close, Reverse Rotation, Positioning and other devices.

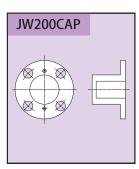
Safety Cap

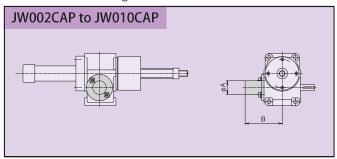

The cap is attached to the jack input shaft, on the other side of the motor unit.

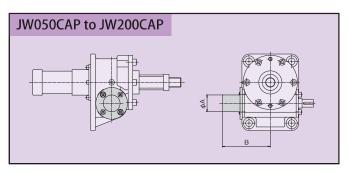

By covering the shaft, a safety cap can prevent accidents and even prevent dust generation for clean room operations.


It is compatible with any of the three jack models: JWM (Machine Screw Type), JWB (Ball Screw Type) and JWH (High Lead Ball Screw Type).


Even if the jack body has already been purchased, safety caps can be installed subsequently.


Cap structure





Dimensional drawing

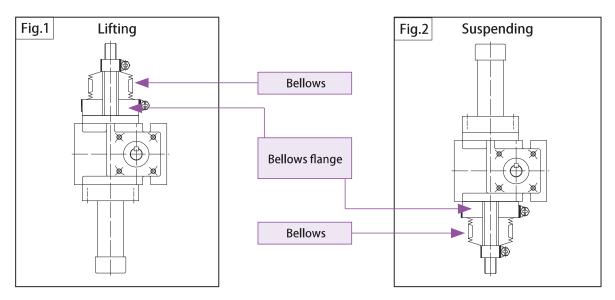
Unit: mm

Safety Cap Model No.	Suitable Jack Model No.	А	В	
JW002CAP	JW002	φ22	63	
JWUUZCAI	JW005	ΨΖΖ	03	
JW010CAP	JW010	4 /0	87	
JWUTUCAP	JW025	φ40	100	
JW050CAP	JW050	φ45	128	
JW100CAP	JW100	φ52	155	
JWTOOCAF	JW150	Ψ32	159	
JW200CAP	JW200	φ60	163	

^{*}All of the above are in stock. Installation screws are provided.

Material: MC Nylon Color: Black

Safety caps made from other materials are also available.

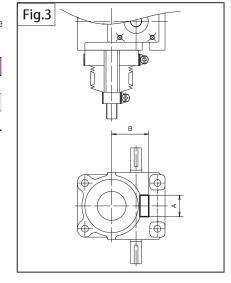

Bellows

Use to protect jack components from liquid, chips, dirt, dust and other debris.

Bellows Below JW010

Sizes below JW010 with bellows are as follows.

Take caution in jack sizing, especially when using for suspension.



A flange is provided for jacks under JW010 with bellows.

When using for suspension, avoid the bellows interfering with machine parts, including the bellows band.

Unit: mm

Frame No.	A	В
JW002	28	42
JW005	28	42
JW010	28	47

High Lead Ball Screw

Bellows for High Lead Ball Screw Types are specially designed for specific shaft rpm.

Contact Tsubakimoto chain to select the most suitable bellows for your High Lead Ball Screw.

MEMO

Linipower Jack

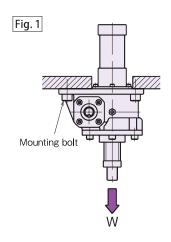
Notes on Installation

Installation ————————————————————————————————————	P297•298
Maintenance and Inspection —	—— P299
General Notes —	— Р300
Glossary ————	—— P301

Installation

1. Orientation

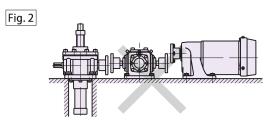
Jacks can be installed horizontally, perpendicularly or inclined. Before installing, however, be sure to select the correct (lifting or suspending) jack type.


Since jacks have an open structure, grease or oil separated from grease may splatter or drop. Prepare oil pans or the like. Especially in the case of using a jack for suspending, grease may run down the screw shaft.

2. Installation Method

Tighten bolts into the 4 mounting holes in the gear case (mounting bolts are not provided). See Table 1 for bolt sizes. Strength class 8.8 or 10.9 bolts are usually used for mounting. Use 10.9 when load applies directly to the mounting bolts as in Fig. 1.

Table 1. Bolt Sizes


Frame No.	Mounting Hole	Bolt Size
JW002	4-φ7	M6
JW005	4-φ7	M6
JW010	4- φ 9	M8
JW025	4-φ11	M10
JW050	4-φ18	M16
JW100	4-φ22	M20
JW150	4-φ22	M20
JW200	4-φ26	M24
JW300	4-φ33	M30
JW500	4-φ42	M39
JW750	4-φ42	M39
JW1000	6-φ42	M39
SJ030H	4-φ14	M12
SJ050H	4 - φ18	M16

* A suspending load together with a self weight of the jack are applied on the mounting bolt as a tension load.

3. Installing Motor, Reducer

When installing a motor and reducer unit in addition to the jack body, prepare a robust counter making allowance for a safety factor to prevent alignment accuracy at installation from being reduced even if the maximum load is applied. Make sure that the transmission shaft connected to the input shaft is aligned accurately (Fig.2). Using a floating shaft may result in malfunction due to vibration depending on rotation speed, therefore, sufficiently consider rigidity of the shaft and backlash of the coupling.

4. Rotation Prevention

The jack's thrusting force may cause the screw shaft (nut in the case of ravel nut type) to rotate, in which case a rotation prevention is required. Screw rotation torque at the basic capacity is described in the standard specification list. When operating with the end connected, and pulling the rope or chain with a sheave or sprocket installed, use the rotation prevention type (symbol M).

5. Shaft End

Attach shaft end by applying an adhesive agent to its setscrew. It is possible for the shaft end to become detached by the rotational torque applied to the shaft. To avoid this, use one of the following adhesives:

<Tightening Agents>

Use the following brands or their equivalent.

Read instructions and safety precautions provided with each product before applying.

Tightening Agents

Brand	Model				
Nihon Lock Tight	# 262, 271				
Three Bond	# 1307N				

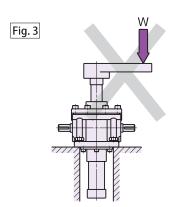
<Fixing with set screw>

After tightening the end fitting, fix with the attached set screw (hexagon socket head screw) as a locking device.

6. Setting the Limit Switch

Consider maximum possible inertia before setting the limit switch. This means calculating the maximum coasting distance affected by specific load and installation conditions. Also, install a mechanical stopper within the stroke range in case of emergencies.

7. Setting the Position Detection Unit


An optional position detection unit (internal LS, potentiometer or rotary encoder) is not factory adjusted for its stroke. Make sure to adjust stroke prior to use. Control units such as the potentiometer and rotary encoder generate various signals by measuring the rotation number of the input shaft. Do not allow the screw shaft (nut in the case of the travel nut) to rotate after adjustment because the setting will deviate if the screw shaft is rotated with the input shaft fixed. When adjusting the internal LS, operate the jack manually or by inching with sufficient care so as not to exceed the stroke range of the jack. If the jack exceeds its stroke limit, the screw shaft may fall off or the bellows may be damaged.

8. Horizontal use of jack with bellows

When using a jack with bellows in the horizontal direction (including use with swing), the screw shaft may catch the bellows, and damage the bellows, or result in failure of the jack. Please contact Tsubakimoto chain.

9. Caution

- (1) Jacks that range under the standard capacity of 49.0kN {5tf} are provided with screw covers made of hard vinyl chloride pipe. Never suspend or carry a jack by its cover.
- (2) Be certain that the jack rating exceeds the maximum possible stroke. If the stroke capacity is exceeded, the shaft may disengage from the unit or fail to function. Preventative devices for such situations are not provided for JWMs (Machine Screw Type) so over stroke must be avoided. Shaft protection provided for JWBs (Ball Screw Type) and JWHs (High Lead Ball Screw Type) is solely for the purpose of preventing shaft rotation during installation. When installing, be sure that the shaft does not rotate or move. When rotation cannot be avoided, use a rotation prevention type.
- ▲ (3) Do not operate input shaft manually while loaded. Load pressure will rotate the shaft.
- (4) Do not use mechanical stops. This will cause major internal damage.
 - (5) Provide oil pans for food manufacturing machines to prevent oil from leaking into food products.
 - (6) To install a screw shaft or cover to the base, avoid drilling large holes so as not to reduce the surface area of contact between the jack and the base.
 - (7) Apply load in the same direction as that of the screw shaft. Load from inappropriate angles can bend the shaft (Fig. 3). For side load, make sure to use guides so the load or bending momentum do not apply directly to the jack.

Maintenance and Inspection

- 1. Screw shaft and reducer unit are factory greased. See Table 1 for the type of grease used.
- 2. Regular lubrication intervals for the shaft screw are as recommended in Table 2. For the amount of grease, see Table 3. To regrease, expand the shaft to full stroke, remove old grease and apply using a grease gun or brush.

 Grease for maintenance is also available. Contact Tsubakimoto Chain.
- 3. Reducer units should be greased based on the lubrication intervals shown in Table 2. However, these intervals may vary depending on operation frequency and conditions. Reducer units of JW025 or greater are provided with grease nipples and hexagon socket head plug. When greasing, remove the hexagon socket head plug and pour grease until grease seeps from the hole for the hexagon socket head plug. After greasing, firmly rewind the seal tape on the hexagon socket head plug to tighten so as to prevent grease from leaking.

Table 1. Recommended Grease

Part	Maker	Grease				
	TSUBAKI	JWGS100G				
C1 6	Idemitsu	* Daphne Eponex Grease SR No.1				
Shaft	Nippon Grease	Niglube EP-1K				
Reducer	Exson Mobil	Mobilux EP No.1				
Unit	Cosmo Lubricants	Cosmo Grease Dynamax EP No.1				
	Showa Shell	Shell Alvania EP Grease 1				

^{*} Factory filled with this grease.

Note) JWGS100G is separately sold in a 100g container. (See page 280.)

Table 2. Lubrication Intervals

Operation	Lubrication Intervals						
Frequency	Machine screw shaft	Ball screw shaft	Reducer unit				
50 to 100/day	1 month	3 months	3 months				
10 to 50/day	3 months	3 months to 6 months	3 months to 6 months				
1 to 10/day	6 mo.s to 1 yr.	6 mo.s to 1 yr.	6 mo.s to 1 yr.				

^{*} Numerical values described above do not indicate the life of screws and reducer units.

Table 3. Amount of Grease

	Application quantity	Initial enclosed quantity	
Frame No.	Shaft (Stroke 100mm)	Reducer Unit	
JW002	5g	35g	
JW005	5g	35g	
JW010	5g	80g	
JW025	10 to 15g	170g	
JW050	10 to 15g	370g	
JW100	20 to 30g	470g	
JW150	20 to 30g	700g	
JW200	40 to 50g	830g	
JW300	40 to 50g	2600g	
JW500	50 to 100g	5500g	

- 4. Grease upper bearings for JWB (Ball Screw Type) and JWH (High Lead Ball Screw Type) using the grease nipple set attached to their housings, at 6-month intervals. Not necessary for jacks JWB/JWH010 and below.
- 5. Inspect regularly for general backlash and screw unit condition. Jack life and replacement timing are determined by the following:
 - JWM···Backlash in the direction of screw shaft and nut hits 1/4 of the screw pitch.
 - JWB JWH···Visible particles due to wear and tear of the screw unit.
 - · All types···Replace gear when its input shaft exceeds 30 rpm with backlash at H speed, or exceeds 60 rpm at L speed.
- ⚠ Generally, continuous use without lubrication at recommended intervals may cause inefficiency of shafts and failure of travel nuts.
- 6. Adjust brake gaps for brake and gearmotors before their gaps reach their maximum capacities. Gap adjustment is not possible for gearmotors with outputs 25W or 40W. For details, see respective instruction manuals.

General Notes

- 1. Carefully consider jack ratings before making a selection. Make sure that all anticipated loads, whether static, dynamic or shock, fall within the rated capacity of the jack at reasonable safety levels.
- 2. Carefully consider the combination of screw shaft rpm and rated load. Also, take extra care in verifying rated buckling load, overhang load and shaft rpm. Exceeding the data provided in this catalog can cause major damage to the system.
- 3. Confirm that the operating temperature of the jack is within -15 to 80°C. To measure, check the surface temperature of input shaft (or nut, if used). Make sure that all rotating parts are completely stopped before proceeding to measure.
- 4. Do not exceed the maximum rpm of 1800/min.
- 5. Continuous operation is not possible. Duty cycle at 30 minute intervals for JWM is within 20% ED, JWB and JWH are within 30% ED.

Duty cycle (%ED) =
$$\frac{1 \text{ Duty cycle}}{1 \text{ Duty cycle} + 1 \text{ Rest cycle}} \times 100\%$$

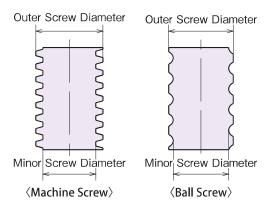
- 6. Be sure not to exceed the maximum input torque for multiple jack systems by verifying the rated input torque for each jack.
- 7. Activating torque should be maintained at 200% above the required torque.
- 8. If operating in freezing temperatures, a change in viscosity may reduce the efficiency of the grease. Set the drive unit so as to accommodate this change.
- 🛕 9. Although JWM is equipped with a self-locking device, vibration and shock may affect its efficiency, in which case a brake unit is required. Because of their extremely high efficiencies, JWB and JWH must have sufficient brake units that over power their holding torques.
- 10. Evaluate operating environment based on the following:

Location	Indoors where rain and moisture are not present
Room Condition	Dust Volume - Normal
Ambient Temperature	−15°C to 80°C (See General Notes No.3)
Relative Humidity	85% or l ess (no dew condensation)

11. When dust level is high, protect shaft with a bellows.

The bellows, which are not water-proof, do not prevent external water from entering and grease in the jack from penetrating to the outside.

(For outdoor use, place a cover to protect jack from factors such as rain and wind).


Glossary

1) Basic Capacity:

The maximum possible load sustained or lifted by a jack. Must be calculated by using the safety rate Sf.

2 Outer Screw Diameter / Minor Screw Diameter:

As illustrated below.

3Screw Lead :

Distance the shaft (or nut, if used) advances in one revolution of worm wheel.

4Stroke:

Possible distance traveled by screw shaft (or nut). Derived from Xmax—Xmn.

5Worm Ratio:

Number of input shaft revolutions required to complete one worm wheel revolution. (Gear ratio of input shaft and worm wheel.)

6 Overall Efficiency:

Total efficiency of the jack including those of the screw and the worm wheel.

Maximum Allowable Input Capacity:

Input capacity that can regulate the balance between load and screw shaft speed or input rpm.

Operate within the rated capacity of duty cycle (%ED) and reducer unit surface temperature (max.80 $^{\circ}$ C).

®Tare Drag Torque:

Torque required to rotate the input shaft of an unloaded jack.

9Holding Torque:

Input torque required for sustaining basic load capacity.

Maximum possible torque allowed for input shaft only. For multiple jack systems, it is the sum of total torque required for synchronous drive, and the actual amount of torque transferred from one jack to another.

①Required Input Torque of Basic Capacity:

Input torque required at the input shaft to lift load of basic capacity.

¹²Screw Movement Per Revolution of Input Shaft:

Distance the screw shaft (or nut) advances in one revolution of the input

[®]Maximum Input rpm for Basic Capacity:

Maximum possible rpm applied to the input shaft to lift load of basic capacity.

4 Screw Shaft Rotational Torque for Basic Capacity:

Torque generated when the screw (or nut) auto-rotates to lift load of basic capacity. Rotation prevention must be installed either on the machine or the jack to prevent screw and nut from rotating simultaneously.

¹⁵Rated Load:

Load derived from the maximum allowable input capacity once the input screw shaft rpm is determined.

16Buckling:

Buckling is produced when the jack rapidly bends from excessive thrusts. Buckling load varies depending on installation condition and/or position.

17 Rated Screw Shaft rpm:

Screw shaft may resonate and vibrate when its rpm comes close to the eigen frequency. It is important that the rpm is lower than the resonance point or the rated screw shaft rpm. Must confirm this for travel nut types.

18 Coasting Distance (Inertia):

Distance traveled after the motor is switched off. System inertia results in over travel depending on the load, brake size and operation circuit.

[®]Stopping Accuracy:

Range of positions where the screw shaft stops after each operation.

20Self-lock:

The ability to maintain load with no brake unit. Self-lock applies to all frame numbers for JWM (Machine Screw Type) 002 to 1000.

21 Duty Cycle:

The ratio of run time to total cycle time.

Duty cycle (%ED) =
$$\frac{1 \text{ Duty cycle}}{1 \text{ Duty cycle} + 1 \text{ Rest cycle}} \times 100 (\%)$$

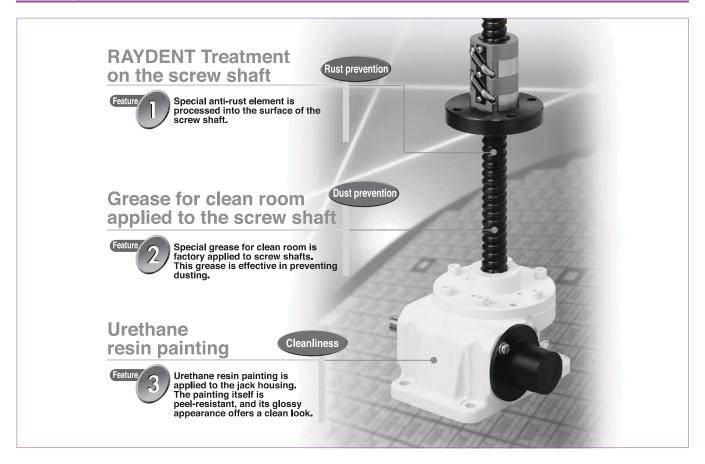
22Thrust:

Power converted from rated torque that is used to lift maximum loads for motored or geared jacks. Motors must be selected carefully when used to run a jack with another motored jack. Also, select thrust for motored jacks with care.

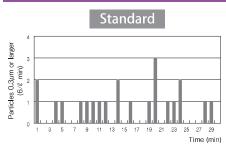
3 Ball Screw Wear Life:

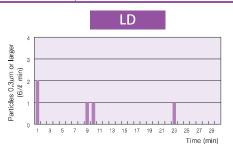
Ball screw wear life is determined by the distance advanced by the screw nut until the ball "flakes" from friction and fatigue. This distance varies even when operated under similar conditions. If the system runs without this "flaking" of the nut for more than 90% of the time, this is considered B10 or the rated ball screw wear life.

Linipower Jack


Product Information

Linipower Jack LD Type ———	P303
Linipower Jack Bevel Gear Type	P304
Mechatro Center —	P305•306


Linipower Jack LD Type


Excellent choice for clean room systems such as FDP (Liquid Crystal/PDP). This model regulates dust generation caused by wear as well as rust produced from the screw. Factory tested for dust volume, it is highly reliable for clean room operations.

1. Basic Specifications

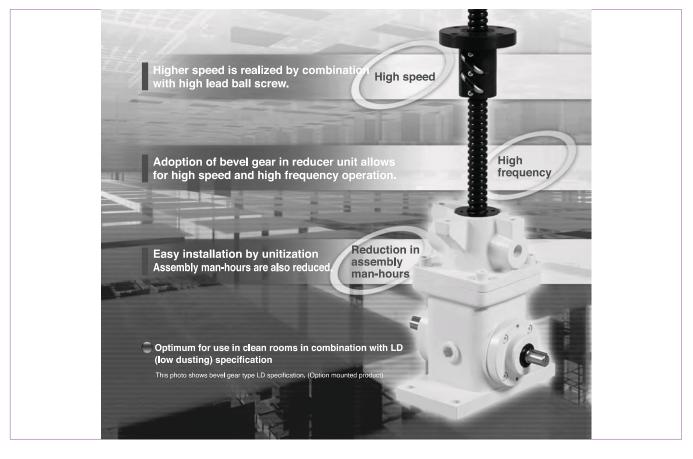
2. Dust Emission Comparison Graphs (Our test results)

[Test Conditions]

Heading	Contents
Frame no.	JWBO25URH5D (Travel nut type)
Speed	40mm/s (Fixed nut, lift/lower repetition, no load)
Location	Clean Room Clean Bench
Portion	Bottom of screw
Equipment	Laser Dust Monitor
Flow	6 ℓ /min
Measured dia. of particles	0.3 μm and larger

* The above data is based on dust emitted from the screw portion. Use a safety cap to prevent dust from the oil seal in the input shaft portion. Dust is collected in this cap and prevented from entering into the atmosphere.

3. Options


The following options are available with Linipower Jack LD Type: (Select according to specific requirements)

Input shaft	Electroless nickel plating
End fitting	Electroless nickel plating
Steel pipe	Metallic screw cover
Safety cap	Plastic
	RAYDENT treatment.

Linipower Jack Bevel Gear Type

Bevel gear type released in response to voices demanding high speed and high frequency operation.

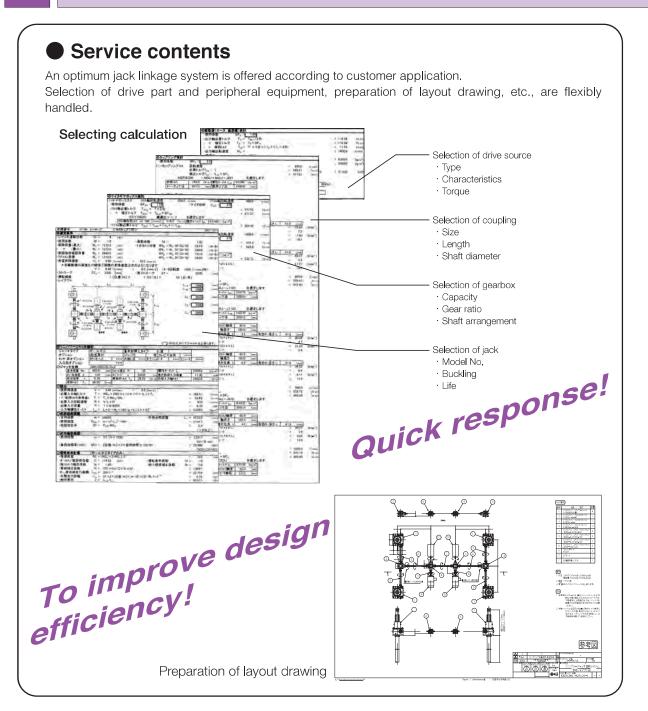
1. Basic Specifications

Lubrication Grease for Power Cylinder and Linipower Jack

TSUBAKI screw shaft lubrication grease

Model No.: JWGS100G

Linipower jack screw set on sale


Sets of screw shafts and nuts for linipower jacks are on sale. For screw specifications (screw diameter and screw lead), see the following pages.

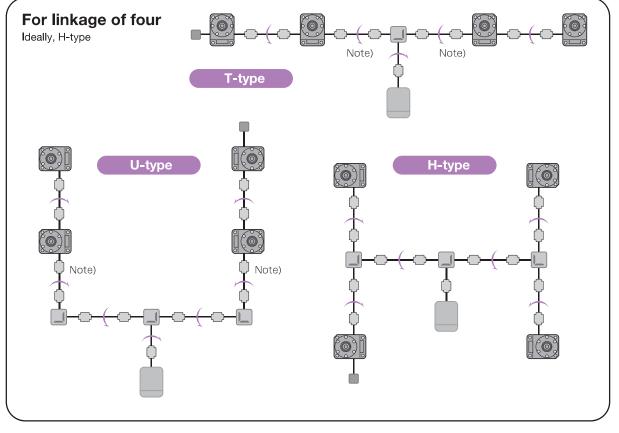
Trapezoidal screw P215 to 216 (up to ϕ 85) Ball screw P241 to 242 (up to ϕ 85)

For use and selection set with coupling and reducer, please feel free to consult with us.

Selection service

[Reducers]

Gearmotor



- Low noise, compact, light
- 0.1 to 2.2 kW
- Gear ratio 1/5 to 1/200
- Unique face mount (standard)
- Quiet, high performance brake.

Hypoid Motor

- Space saver
- 0.1 to 5.5kW Gear ratio 1/5 to 1/1200
- Face or foot mounting and hollow shaft (all standard).
- Quiet, high performance brake.

...Linipower Jack

Jacks lift as rotational input is $\ensuremath{\mathsf{app}}\xspace{\mathsf{lied}}$ in the direction of each arrow.

Note) Consider allowable input torque when driving in series.

[Gear Boxes]

Miter Gear Box

- Gear ratio 1:1 size 10 Gear ratio 1.5:1 size 5 Gear ratio 2:1 size 9 Gear ratio 2.5 : 1 size 5 Gear ratio 3:1 size 5
- Enhanced performance by new AGMA standards.
- Wide variation of models.
- High reliability

[Coupling]

ECHT-FLEX® coupling

- Torque range : 2.9 to 176400 N·m
- Bore diameter range : 5 to 289 mm
- No backlash, high efficiency and servo motor compatible.
- Requires less maintenance, no lubrication and long life. Long Spacer Types requiring no bearings available.

Jaw Flex Coupling

- Compact, light
- Simple
- Easy to un/install

Ask Tsubakimoto Chain for other protecting devices such as shock relays, torque limiters, and shock guards

NOTE

Inquiry Form

Power Cylinder Inquiry Form

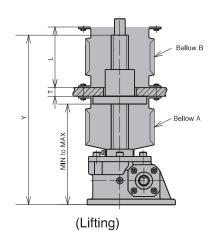
Inform Tsubakimoto Chain of the following items when making an inquiry.

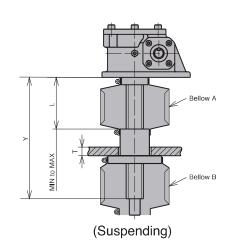
Com	ipany name:		Your name:			_
Phor	ne :		FAX :			
Add	ress:					_
Ē	1. Application load (thrust)	Normal operation	N{kgf}	Max	N{kgf}	
Basic Specification	2. Speed		mm/s (at 50Hz, 60Hz)		
Spe	3. Stroke	Actual stroke	mm	Max stroke	mm	
Electric Motor	4. Power source		//60Hz、220V/60Hz //60Hz、440V/60Hz	Others		
Electr	5. Special specification	Brake, Outdoors		Others		
	6. Operation	times/min x (Back and forth co	min/hr x ount as 2 times)	hrs./day x	days/yr	
nent	7. Ambient temperature			°C		
Operating Environment	8. Mounting location	Indoor, Outdoors		Others		
rating E	9. Dust	Average, High				
Ope	10. Control device	Stroke adjustment external limit sw Internal limit switch, Potentic		Others		
	11. Others	Trunnion fitting, clevis fitting	g, I-shape end fitting	Others		
Layo	ut and other information					

Servo Type Inquiry Form

Inform Tsubakimoto Chain of the following items when making an inquiry.

-011	npany name:			Your name	•
ho	ne:			FAX :	
\dd	lress:				
Eq	uipment stand	ard condition Description	on of equipment	used	[Power cylinder operation cycle]
	e and property cad	☐ Horizontal ☐ lift ☐ suspensi extent of shock, inertia and vibration	on 🗌 tilt 🗌 others on 🔲 Small 🗌 Midd	lle □ Large	1 cycle se
Γra	nsfer mass	kg		kg	mm/sec
Ved	cessary thrust	Normal Noperation (kgf)	Max	N {kgf}	
Spe	eed	Normal operation mm/s	Max.	mm/s	Retract mm/sec
Stro	oke	Normal operation mm	Max.	mm	(Induct)
	erating frequency and forth count as 2 times)	times/min x min/r	nr x hrs./day x	days/yr	
	ver cylinder ected life	() y	ears operating		sec
Sei	rvomotor used]			
	rvomotor Inufacturer			Servomotor model No.	
Oth	ner conditions)				,
_	Ambient temperature		°C		
	Location	☐ Indoor ☐ Others ()	
	Dust	☐ Nearly average☐ Others ()	
	Power source	☐ 3-phase 200/200 220 ☐ Others (OV AC 50/60/60H	z)	
)	Others	☐ Trunnion fitting ☐ U-☐ Bellows ☐ Ot	-shape end fitting hers (☐ Magnet	tic sensor
L	ayout and other	information			


Linipower Jack Inquiry Form


Inform Tsubakimoto Chain of the following items when making an inquiry.

Cor	mpany name:	Your name:
Pho	one	FAX :
Add	dress:	
on	Equipment or load condition	Equip. description no shock moderate shock severe shock light load medium load heavy load
nditi	Overall equip, weight/No.of jacks	Equip. Max load kN (tf)/Jack (Equip. Min. load kN (tf)/Jack)
00 0	Installation form	Standard specification (Lift/Suspend) With/Without Rotation prevention Travel Nut (Lift/Suspend)
Operating condition	Installation condition	A. Fixed base, and free shaft end B. Clevis on both ends C. Fixed base and fixed shaft end
Ope	(Buckling safety rate sf)	(Sf=) Leave open if no buckling load applies to the screw shaft.
	Screw type	Machine screw type Ball screw type High lead screw type
Three specifications	1. Load requirement	Load /Jack based on above information kN { tf}
Th	2. Speed	tomm/s (to mm/min)
ds	3. Stroke	Actual Strokemm Max, strokemm
	Operation	times/min xmin/hr xhrs./day xdays/yr (Back and forth count as 2 times)
		Motor with brake(Gearmotor with brake)
L C	Source	kW (1/) Others
nditic	Power	VHz
cor	Input R.P.M	r/min_
Operating condition	Ambient temperature	<u> </u>
pera	Equipment condition	Location with/without guides
	Dust	Average High with / without bellows Others
	Control device	Counter Imit swicth • Potentiometer • Rotary encoder • Others K2•K4
	Others	Shaft end (B·I·M type end fitting) • Hand wheel • Clevis • Others
Layou	ut and other information	

Bellows Inquiry Form for Travel Nut Type

Select bellows for use with travel nuts based on the diagrams below. Select from band or flange type bellows.

①Jack model No.	

②Actual stroke	َ		_mm	
MIN	mm	to	MAX	mm

③Type of bellows

Bellows A Band-band, band-flange, flange-flange Bellows B Band-band, band-flange, flange-flange

4 Jack scr	rew shaft length limite	ed yes/no
Y=	mm	

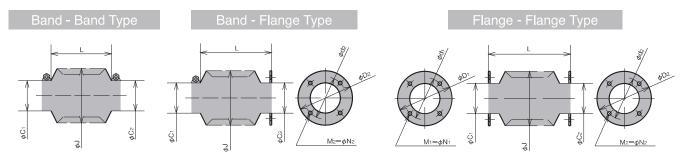
⑤Base measurements

T=____mm

6 Maximum outer diameter of bellow ϕ J No Limit, ϕ JA=___mm ϕ JB=__mr

® Bellows L measurements L

LAMIN	mm to LAMAX=	mm (bellows A)
LBMIN	mm to LBmax=	mm (bellows B)


9 Bellows attachment opening ϕ C

φ Ca1=	mm	φ Ca2=	mm (bellows A)
φ Cв1=	mm	φ Cв2=	mm (bellows B)

⑦Flange type and structure (Record only if flange type was selected in ③).

			•					
φDa1=r	ηm	φda1=	_mm	bolt mounting part	M1=	_Pcs	φN1=	_mm (bollows A)
φDa2=r	mm	φda2=	_mm	bolt mounting part	M2=	_Pcs	φN2=	_mm (bellows A) _mm
φDв1= <u>r</u>	mm	φdв1=	_mm	bolt mounting part	M1=	_Pcs	φN1=	_mm (bollows P)
φDв2=r	mm	φdв2=	_mm	bolt mounting part	M ₂ =	_Pcs	φN ₂ =	_mm _mm (bellows B)

Bellows Types

NOTE

SAFET

Warning Observe the following safety precautions to prevent serious injuries.

- Do not release the brake while jack is loaded. If the brake is released under loaded conditions, suspended objects may fall and lead to accidents.
- Make sure the jack is not loaded when manually operated. Operate jack according to the instruction manual.
- During suspending operations, provide safety guards to prevent load from falling and never stand under the jack.
- Observe the Labor Safety & Hygiene Regulations, General Criteria, Paragraph 1, Chapter 1, Edition 2, or your local regulations.
- ●Installation, removal, maintenance and inspection:
 - Carry out operation according to the instruction manual.
 - · While performing electrical wiring, observe laws and regulations such as Electricity Equipment Criteria and Extension Rules, as well as the cautions (e.g. direction, space, operating conditions, etc.) indicated in the manual. Be especially careful in following the instructions on grounding to prevent electric shocks.
 - Turn off the power and make sure that it does not reconnect accidentally.
 - · Wear appropriate clothing and protective gears (safety glasses, gloves, safety shoes, etc.).

Caution Observe the following safety precautions to prevent accidents.

- Always operate within the allowable stroke range. Operating a jack outside its allowable stroke range may result in accidents.
- Before switching on the jack, make sure the limit switches have been wired correctly and the stroke has been adjusted appropriately.
- ●The motor must be driven within the correct electrical voltage range to prevent motor burnout or fire.
- Efficiencies of parts may decrease with wear and age. Carry out periodic inspections as set forth in the manual. When the parts are no longer functioning or are ineffective, please contact a TSUBAKI distributor for repair.
- Read the manual provided with the product thoroughly before operating and refer to it as necessary. If the instruction manual is misplaced, request a replacement copy from TSUBAKI or your TSUBAKI distributor, indicating the product name, series, and model number.
- The instruction manual must be delivered to the final user.

Warranty

1. Warranty period without charge

18 months effective the date of shipment or 12 months effective the first use of Goods, including installation of Goods to Buyer's equipment or machine - whichever comes first.

2. Warranty coverage

Should any damage or problem with the Goods arise within the warranty period, given that the Goods were operated and maintained according to the instructions provided in the manual, Seller will repair and replace at no charge once the Goods are returned to the Seller. This warranty does not cover the following:

- 1) Any costs related to removal of Goods from the Buyer's equipment or machine to repair or replace parts.
- 2) Cost to transport Buyer's equipment or machine to the Buyer's repair shop.
- 3) Costs to reimburse any profit loss due to any repair or damage and other consequential losses caused by the Buyer.

3. Warranty with charge

Seller will charge any investigation and repair of Goods caused by:

- 1) Improper installation by failing to follow the instruction manual.
- 2) Insufficient maintenance or improper operation by the Buyer.
- 3) Incorrect installation of Goods to other equipment or machine.

- 4) Any modifications or alterations of Goods by the Buyer.
- 5) Any repair by engineers other than the Seller or those designated by the Seller.
- 6) Operation in an inappropriate environment not specified in the manual.
- 7) Force Majeure or forces beyond the Seller's control such as natural disasters and injustices done by a third party.
- 8) Secondary damage or problem incurred by the Buyer's equipment or machine.
- 9) Defected parts supplied, or specified by the Buyer.
- 10) Incorrect wiring or parameter setting by the Buyer.
- 11) The end of life cycle of the Goods under normal usage.
- 12) Loss or damage not liable to the Seller

4. Dispatch service

Service to dispatch a Seller's engineer to investigate, adjust or trial test Seller's Goods is at the Buyer's expense.

TSUBAKIMOTO CHAIN CO.

Japan Headquarters +81 6-6441-0011 https://tsubakimoto.com

Global Group Companies

AMERICAS

United States of America
U.S. Tsubaki Power Transmission, LLC
+1 847-459-9500
http://www.ustsubaki.com/
Brazil
Tsubaki Brasil Equipamentos Industriais Ltda.
+55 11-3253-5656
http://tsubaki.ind.br/
http://tsubaki.ind.br/

EUROPE

Tsubakimoto Europe B.V. +31 78-6204000 http://tsubaki.eu/ Netherlands France Kabelschlepp France S.A.R.L. +33 1-34846365 http://kabelschlepp.fr/ Germany Tsubaki Deutschland GmbH +49 8105-7307100 http://tsubaki.de/ Tsubaki Kabelschlepp GmbH +49 2762-4003-0 http://kabelschlepp.de/ Italy Kabelschlepp Italia S.R.L. +39 0331-350962 http://kabelschlepp.it/ Russia 000 Tsubaki Kabelschlepp +7 499-4180212 http://kabelschlepp.ru/ Spain Tsubaki Ibérica Power Transmission S.L. +34 911-873450 http://tsubaki.es/ United Kingdom Tsubakimoto U.K. Ltd. +44 1623-688-700 http://tsubaki.eu/

INDIAN OCEAN RIM

Singapore Tsubakimoto Singapore Pte. Ltd. +65 6861-0422/3/4 http://tsubaki.sg/ Australia Tsubaki Australia Pty. Limited +61 2-9704-2500 http://tsubaki.com.au/ India Tsubaki India Power Transmission Private Limited +91 73580-80060 http://tsubaki.in/ Indonesia PT. Tsubaki Indonesia Trading +62 21-571-4230/1 http://tsubakimoto.co.id/ Malaysia Tsubaki Power Transmission (Malaysia) Sdn. Bhd. +60 3-7859-8585 http://tsubaki.my/ New Zealand Tsubaki Australia Pty. Limited - New Zealand Branch +64 9 352-2085 http://tsubaki.com.au/ Philippines Tsubakimoto Philippines Corporation +63 2-808-0067 http://tsubaki.ph/ Thailand Tsubakimoto (Thailand) Co., Ltd. +66 2-262-0667/9 http://tsubaki.co.th/ Vietnam Tsubakimoto Vietnam Co., Ltd. +84 4-6274-1449 http://tsubaki.net.vn/

EAST ASIA

Korea Tsubakimoto Korea Co., Ltd. +82 2-2183-0311 http://tsubakimoto-tck.co.kr/
Taiwan Taiwan Tsubakimoto Co. +886 33-293827/8/9 http://tsubakimoto.com.tw/

CHINA

China Tsubakimoto Chain (Shanghai) Co., Ltd. +86 215396-6651/2 http://tsubaki.cn/