Product Features #### **Temporary Compensation at Low Voltage** - During temporary power disruptions, output frequency can be controlled in order to maintain the DC bus voltage of the AC drive to control motor deceleration or stoppage. - When power is restored, the AC drive will carry out re-acceleration to attain the frequency prior to power stoppage. - May be applied to equipment which is not permitted to operate when idle. By adjusting output frequency and voltage, ## **Regeneration Avoidance Functions** By adjusting output frequency and voltage, DC bus voltage can be kept at a specified value and prevent overvoltage. #### **Magnetic Flux Brake** When the motor is stopping, the magnetic flux will be transmitted to the motor coil to shorten deceleration time without relying on regenerative resistance. ### **Low-noise Carrier Wave Control (Soft-PWM)** - Motor noise is controlled so that the metallic sound is transformed into a more pleasing buzz. - Low noise operations reduce the interference exerted upon external radio frequencies. ### **Product Features** #### **Multiple I/O Terminals** - · Includes 10 sets of multi-functional combinational logic input terminals (with high-speed pulse inputs *1) - Includes 5 sets of multi-functional combinational output terminals (including electric relay output *2, transistor output *2, and high-speed pulse output *1). - · Includes 3 sets of analog input signals (with -10~+10V*1 and 4~20mA/0~10V*2). - · Includes 2 sets of analog output signals (0~20mA/0~10V*2). - · 1 set of safety switch (S1~SC). #### **Built-in PLC Functions** - Provides PLC programming software for easy editing program. - Applicable for programming for small number of point sand capable of supporting multiple functions. #### Through-the-wall Installation Support Provided for the Entire Series Improve heat dissipation, reduce heat generation within the cabinet, and improve protection for the cabinet contents. #### 12 Sets of Alarm Records For each alarm that occurs, the output frequency, output current, output voltage, accumulated count of temperature increase, PN voltage, total AC drive operation time, AC drive operational status, and the year, month, day, hour, minute, and second of the alarm will be recorded (only when used with PU301C). #### **Improved Protection** Output phase failure protection, output short circuit protection, ground leakage protection, low voltage protection, motor overheating signal (PTC), and electrolytic capacitor life inspection. #### SA3 All-Series Built-in RFI Filter · RFI is capable of suppressing electromagnetic interference # Electrical Specifications | Frame | | | | | Α | | | | В | | | C | | D | | |--|--------------------------------------|---|--|---|---|---|--|--|--|--|---|---|---|---|--| | Model SA3-043-□□□K □- | | | 0.75K
1.5KF | 1.5K
2.2KF | 2.2K
3.7KF | 3.7K
5.5KF | 5.5K
7.5KF | 7.5K
11KF | 11K
15KF | 15K
18.5KF | 18.5K
22KF | 22K
30KF | 30K
37KF | 37K
45KF | | | | | Rated output capacity (kVA) | 2 | 3 | 4.6 | 6.9 | 10 | 14 | 18 | 25 | 29 | 34 | 46 | 56 | | | | | Rated output current (A) | 3.0 | 4.2 | 6 | 9 | 12 | 17 | 24 | 32 | 38 | 45 | 60 | 73 | | | | | Applicable motor capacity (HP) | 1 | 2 | 3 | 5 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | | | ' | - 1 | Applicable motor capacity (kW) | 0.75 | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | | | | | Overload current rating | | | | 150% 60 s | econds 20 | 00% 3seco | nds (invers | e time cha | aracteristics | 5) | | - | | | | | Carrier frequency (kHz) | 02 | | 140 | 0 | | 1 ~ 15kHz | | | 201 | 10 | -0 | 1~9kH | | | Output | | Rated output capacity (kVA) | 3 | 4.6 | 6.9 | 10 | 14 | 18 | 25 | 29 | 34 | 46 | 56 | 69 | | | 두 | | Rated output current (A) | 4.2 | 6 | 9 | 12 | 17 | 24 | 32 | 38 | 45 | 60 | 73 | 91 | | | ١, | | Applicable motor capacity (HP) | 2 | 3 | 5 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | | | l r | ND | Applicable motor capacity (kW) | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | | | | | Overload current rating | | | • | 12 | 20% 60sec | onds (inve | rse time d | naracteristi | cs) | | | 10 | | | | | Carrier frequency (kHz) | | | | | | 1 ~ 15kHz | : | | | | | 1~9kH | | | M | Maximum output voltage | | | | | | 1 | hree-phas | e 380-480 | V | | | | 16. | | | _D Ra | ated po | wer voltage | | Three-phase 380-480V 50Hz / 60Hz | | | | | | | | | | | | | Power supply | ower vo | Itage permissible fluctuation | | Three-phase 342-528V 50Hz / 60Hz | | | | | | | | | | | | | SUD Po | ower fre | equency permissible fluctuation | | ±5% | | | | | | | | | | | | | ₽ | OWEF SO | urce capacity (kVA) | 2.5 | 4.5 | 6.9 | 10.4 | 11.5 | 16 | 20 | 27 | 32 | 41 | 52 | 65 | | | Cooling method | | | Self cooling | Self cooling Forced air cooling | | | | | | | | | | * | | | | | (ka) | 3.15 | 2 4 5 | 2003020 | 92000000 | 9880980831 | 19437 | | 2000 | | 1 | A3. 5.5-(1) | | | | Wei | eignt | (kg) | 2.12 | 3.15 | 3.15 | 3.15 | 3.15 | 6 | 6 | 6 | 9.8 | 9.8 | 9.8 | 33 | | | We | 7 | | 3.15 | | 3.15 | | | | 6 | | | 9.8 | | | | | We | 7 | Frame | | D | | ı | E | F | | | G | | 1200 / 1000 | Н | | | | | Frame
3-043-□□□K □- | 45K
55KF | D
55K
75KF | 75K
90KF | 90K
110KF | 110K
132KF | F
132K
160KF | 160K
185KF | 185K
220KF | 220K
250KF | 250K
280KF | 280K
315KF | 315K
355KF | | | | | Frame 3-043K Rated output capacity (A/A) | 45K
55KF
69 | 55K
75KF
84 | 75K | 90K | 110K | F
132K | 160K | 185K | 220K
250KF
367 | 250K | 280K | 315K
355KF
491 | | | | | Frame 3-043 | 45K
55KF
69
91 | 55K
75KF
84
110 | 75K
90KF
114
150 | 90K
110KF
137
180 | 110K
132KF
168
220 | F
132K
160KF
198
260 | 160K
185KF
236
310 | 185K
220KF
295
340 | 220K
250KF
367
425 | 250K
280KF
402
480 | 280K
315KF
438
530 | 315K
355KF
491
620 | | | /lodel | | Frame 3-043K Rated output capacity (AVA) Rated output current (A) Applicable motor capacity (HP) | 45K
55KF
69
91
60 | 55K
75KF
84
110
75 | 75K
90KF
114
150 | 90K
110KF
137
180
120 | 110K
132KF
168
220
150 | 132K
160KF
198
260
175 | 160K
185KF
236
310
215 | 185K
220KF
295
340
250 | 220K
250KF
367
425
300 | 250K
280KF
402
480
335 | 280K
315KF
438
530
375 | 315K
355KF
491
620
420 | | | /lodel | l SA | Frame 3-043- | 45K
55KF
69
91 | 55K
75KF
84
110 | 75K
90KF
114
150
100
75 | 90K
110KF
137
180
120
90 | 110K
132KF
168
220
150
110 | F
132K
160KF
198
260
175
132 | 160K
185KF
236
310
215
160 | 185K
220KF
295
340
250
185 | 220K
250KF
367
425
300
220 | 250K
280KF
402
480
335
250 | 280K
315KF
438
530 | 315K
355KF
491
620 | | | Model | l SA | Frame 3-043- | 45K
55KF
69
91
60 | 55K
75KF
84
110
75 | 75K
90KF
114
150
100
75 | 90K
110KF
137
180
120
90 | 110K
132KF
168
220
150
110
econds 20 | F
132K
160KF
198
260
175
132
00% 3secon | 160K
185KF
236
310
215
160 | 185K
220KF
295
340
250
185 | 220K
250KF
367
425
300 | 250K
280KF
402
480
335
250 | 280K
315KF
438
530
375
280 | H 315K
355KF 491 620 420 315 | | | Model | l SA | Frame 3-043 | 45K
55KF
69
91
60
45 | 55K
75KF
84
110
75
55 | 75K
90KF
114
150
100
75 | 90K
110KF
137
180
120
90
150% 60 se | 110K
132KF
168
220
150
110
econds 20 | 132K
160KF
198
260
175
132
10% 3secol | 160K
185KF
236
310
215
160
nds (invers | 185K
220KF
295
340
250
185
se time cha | 220K
250KF
367
425
300
220 | 250K
280KF
402
480
335
250 | 280K
315KF
438
530
375
280 | H 315K
355KF 491 620 420 315 | | | Model | l SA | Frame 3-O43- | 45K
55KF
69
91
60
45 | 55K
75KF
84
110
75
55 | 75K
90KF
114
150
100
75 | 90K
110KF
137
180
120
90
150% 60 se | 110K
132KF
168
220
150
110
econds 20
1~5 | 132K
160KF
198
260
175
132
10% 3secon | 160K
185KF
236
310
215
160
ands (invers | 185K
220KF
295
340
250
185
se time cha | 220K
250KF
367
425
300
220
aracteristics | 250K
280KF
402
480
335
250 | 280K
315KF
438
530
375
280 | H 315K 355KF 491 620 420 315 | | | Model | l SA | Frame 3-043- | 45K
55KF
69
91
60
45 | 55K
75KF
84
110
75
55 | 75K
90KF
114
150
100
75 | 90K
110KF
137
180
120
90
150% 60 se | 110K
132KF
168
220
150
110
econds 20 | 132K
160KF
198
260
175
132
10% 3secol | 160K
185KF
236
310
215
160
nds (invers | 185K
220KF
295
340
250
185
se time cha | 220K
250KF
367
425
300
220 | 250K
280KF
402
480
335
250 | 280K
315KF
438
530
375
280 | H 315K
355KF 491 620 420 315 | | | Model | il sa: | Frame 3-043 | 45K
55KF
69
91
60
45 | 55K
75KF
84
110
75
55 | 75K
90KF
114
150
100
75 | 90K
110KF
137
180
120
90
150% 60 se | 110K
132KF
168
220
150
110
econds 20
1~5 | 132K
160KF
198
260
175
132
10% 3secon | 160K
185KF
236
310
215
160
ands (invers | 185K
220KF
295
340
250
185
se time cha | 220K
250KF
367
425
300
220
aracteristics | 250K
280KF
402
480
335
250 | 280K
315KF
438
530
375
280 | H 315K 355KF 491 620 420 315 6kHz 544 683 475 | | | Model | l SA | Frame 3-043- | 45K
55KF
69
91
60
45 | 55K
75KF
84
110
75
55 | 75K
90KF
114
150
100
75 | 90K
110KF
137
180
120
90
150% 60 s
168
220
150
110 | 110K
132KF
168
220
150
110
econds 20
1~5
198
260
175
132 | 132K
160KF
198
260
175
132
10% 3secol
0kHz
236
310
215 | 160K
185KF
236
310
215
160
nds (inversional properties)
295
340
250
185 | 185K
220KF
295
340
250
185
se time cha
367
425
300
220 | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250 | 280K
315KF
438
530
375
280
1~
491
620 | H 315K 355KF 491 620 420 315 6kHz 544 683 | | | Model | il sa: | Frame 3-O43- | 45K
55KF
69
91
60
45
84
110
75 | 55K
75KF
84
110
75
55
114
150
100 | 75K
90KF
114
150
100
75
137
180 | 90K
110KF
137
180
120
90
150% 60 s
168
220
150
110 | 110K
132KF
168
220
150
110
econds 20
1~5
198
260
175
132 | 132K
160KF
198
260
175
132
10% 3secol
0kHz
236
310
215 | 160K
185KF
236
310
215
160
nds (inversional distribution of the control co | 185K
220KF
295
340
250
185
se time cha
367
425
300
220 | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250
s)
438
530
375 | 280K
315KF
438
530
375
280
1~
491
620
420 | H 315K 355KF 491 620 420 315 6kHz 544 683 475 | | | Output | HD ND | Frame 3-O43-DDKD-Rated output capacity (KVA) Rated output current (A) Applicable motor capacity (KVA) Applicable motor capacity (KVA) Overload current rating Carrier frequency (KVA) Rated output capacity (KVA) Rated output current (A) Applicable motor capacity (KVA) Overload current rating Carrier frequency (KVA) Certoad current rating Carrier frequency (KVA) | 45K
55KF
69
91
60
45
84
110
75 | 55K
75KF
84
110
75
55
114
150
100 | 75K
90KF
114
150
100
75
137
180 | 90K
110KF
137
180
120
90
150% 60 s
168
220
150
110 | 110K
132KF
168
220
150
110
econds 20
1~5
198
260
175
132
20% 60sec | 132K
160KF
198
260
175
132
10% 3secon
0kHz
236
310
215
160
onds (invenible) | 160K
185KF
236
310
215
160
nds (invers
295
340
250
185
rse time d | 185K
220KF
295
340
250
185
se time cha
425
300
220 | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250
s)
438
530
375 | 280K
315KF
438
530
375
280
1~
491
620
420
315 | H 315K 355KF 491 620 420 315 6kHz 544 683 475 | | | Model Property of the Configuration Configur | HD ND | Frame 3-043 | 45K
55KF
69
91
60
45
84
110
75 | 55K
75KF
84
110
75
55
114
150
100 | 75K
90KF
114
150
100
75
137
180 | 90K
110KF
137
180
120
90
150% 60 s
168
220
150
110 | 110K
132KF
168
220
150
110
econds 20
1~5
198
260
175
132
20% 60sec | 132K
160KF
198
260
175
132
10% 3secol
0kHz
236
310
215
160
onds (inve | 160K
185KF
236
310
215
160
nds (invers
295
340
250
185
rse time d | 185K
220KF
295
340
250
185
se time cha
367
425
300
220
haracteristi | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250
s)
438
530
375 | 280K
315KF
438
530
375
280
1~
491
620
420
315 | H 315K 355KF 491 620 420 315 6kHz 544 683 475 355 | | | Output | HD ND ated po | Frame 3-O43- | 45K
55KF
69
91
60
45
84
110
75 | 55K
75KF
84
110
75
55
114
150
100 | 75K
90KF
114
150
100
75
137
180 | 90K
110KF
137
180
120
90
150% 60 s
168
220
150
110 | 110K
132KF
168
220
150
110
econds 20
1~5
198
260
175
132
20% 60sec | 132K
160KF
198
260
175
132
10% 3secon
0kHz
236
310
215
160
onds (invenible) | 160K
185KF
236
310
215
160
nds (invers
295
340
250
185
rse time d | 185K
220KF
295
340
250
185
se time cha
367
425
300
220
haracteristi | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250
s)
438
530
375 | 280K
315KF
438
530
375
280
1~
491
620
420
315 | H 315K 355KF 491 620 420 315 6kHz 544 683 475 355 | | | Output | HD ND laximum | Frame 3-O43-□□□K□- Rated output capacity (kVA) Rated output current (A) Applicable motor capacity (kV) Overload current rating Carrier frequency (kVA) Rated output capacity (kVA) Rated output current (A) Applicable motor capacity (kVA) Applicable motor capacity (kVA) Overload current rating Carrier frequency (kVA) overload current rating Carrier frequency (kVA) n output voltage wer voltage | 45K
55KF
69
91
60
45
84
110
75 | 55K
75KF
84
110
75
55
114
150
100 | 75K
90KF
114
150
100
75
137
180 | 90K
110KF
137
180
120
90
150% 60 s
168
220
150
110 | 110K
132KF
168
220
150
110
econds 20
1~5
198
260
175
132
20% 60sec
1~5 | 132K
160KF
198
260
175
132
10% 3secol
0kHz
236
310
215
160
onds (inve | 160K
185KF
236
310
215
160
ands (inversional properties)
295
340
250
185
rse time de 380-480
480V 50Hz | 185K
220KF
295
340
250
185
se time cha
367
425
300
220
haracteristi | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250
s)
438
530
375 | 280K
315KF
438
530
375
280
1~
491
620
420
315 | H 315K 355KF 491 620 420 315 6kHz 544 683 475 355 | | | Output Power supp | HD ND laximun | Frame 3-O43-□□□K□- Rated output capacity (kVA) Rated output current (A) Applicable motor capacity (kW) Overload current rating Carrier frequency (kVA) Rated output capacity (kVA) Rated output capacity (kVA) Applicable motor capacity (kVA) Applicable motor capacity (kW) Overload current (A) Applicable motor capacity (kW) overload current rating Carrier frequency (kHz) n output voltage wer voltage wer voltage | 45K
55KF
69
91
60
45
84
110
75 | 55K
75KF
84
110
75
55
114
150
100 | 75K
90KF
114
150
100
75
137
180 | 90K
110KF
137
180
120
90
150% 60 s
168
220
150
110 | 110K
132KF
168
220
150
110
econds 20
1~5
198
260
175
132
20% 60sec
1~5 | 132K
160KF
198
260
175
132
100% 3secon
0kHz
236
310
215
160
oonds (invertible)
160
oonds (invertible)
160
oonds (invertible) | 160K
185KF
236
310
215
160
ands (inversional properties)
295
340
250
185
rse time de 380-480
480V 50Hz | 185K
220KF
295
340
250
185
se time cha
367
425
300
220
haracteristi | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250
s)
438
530
375 | 280K
315KF
438
530
375
280
1~
491
620
420
315 | H 315K 355KF 491 620 420 315 6kHz 544 683 475 355 | | | Violet Power supply | ND laximun ated po ower to ower free | Frame 3-O43- | 45K
55KF
69
91
60
45
84
110
75 | 55K
75KF
84
110
75
55
114
150
100 | 75K
90KF
114
150
100
75
137
180 | 90K
110KF
137
180
120
90
150% 60 s
168
220
150
110 | 110K
132KF
168
220
150
110
econds 20
1~5
198
260
175
132
20% 60sec
1~5 | 132K
160KF
198
260
175
132
10% 3secon
0kHz
236
310
215
160
oonds (inversibles)
160
oonds (inversibles) | 160K
185KF
236
310
215
160
nds (inversional final fina | 185K
220KF
295
340
250
185
se time cha
367
425
300
220
haracteristi | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250 | 250K
280KF
402
480
335
250
s)
438
530
375 | 280K
315KF
438
530
375
280
1~
491
620
420
315 | H 315K 355KF 491 620 420 315 6kHz 544 683 475 355 | | | Violet Power supply | ND laximun ated po ower to ower free | Frame 3-O43-□□□K□- Rated output capacity (kVA) Rated output current (A) Applicable motor capacity (kW) Overload current rating Carrier frequency (kVA) Rated output capacity (kVA) Rated output capacity (kVA) Applicable motor capacity (kVA) Applicable motor capacity (kW) Overload current (A) Applicable motor capacity (kW) overload current rating Carrier frequency (kHz) n output voltage wer voltage wer voltage | 45K
55KF
69
91
60
45
84
110
75
55 | 55K
75KF
84
110
75
55
114
150
100
75 | 75K
90KF
114
150
100
75
137
180
120
90 | 90K
110KF
137
180
120
90
150% 60 sc
168
220
150
110 | 110K
132KF
168
220
150
110
econds 20
15
198
260
175
132
20% 60sec
15
Three-p | 132K
160KF
198
260
175
132
10% 3secon
0kHz
236
310
215
160
oonds (inversibles)
160
oonds (inversibles) | 160K
185KF
236
310
215
160
nds (invers
295
340
250
185
rse time d | 185K
220KF
295
340
250
185
se time cha
367
425
300
220
haracteristi | 220K
250KF
367
425
300
220
aracteristics
402
480
335
250
cs) | 250K
280KF
402
480
335
250
5)
438
530
375
280 | 280K
315KF
438
530
375
280
1~
491
620
420
315 | H 315K 355KF 491 620 420 315 6kHz 544 683 475 355 | | Note: The test conditions of rated output current, rated output capacity and frequency converter AC Drive power consumption are: the carrier frequency (P.72) is at the set value; the frequency converter/AC Drive output voltage is at 440V; the output frequency is at 60Hz, and the ambient temperature is 40°C. # **Wiring Diagram** #### NOTE - 1. R1, S1 terminal is only D ~ H framework, specific wiring please refer to the section 3.7.5. - 2. RFI filter Settings, please refer to section 3.7.4. - 3. The brake resistor connection approach between +/P and PR is for Frame A, B and C only. For connecting the brake unit of Frame D, E, F, G and H to between +/P and -/N, please refer to the Section 3.7.1 for details. - 4. The DC resistor between +/P and P1 is optional. Please short +/P and P1 when AC resistor is not used. - 5. When adding DC reactors, please remove the short circuit piece between P1 and +/P. Please refer to the Section 3.6.4 for the reactor type. 6. Please refer to the Section 5.3.9 for wiring of HDO. # Dimensions | Frame D | | | | | | | | | | | |------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|--|--| | Model type | W
(mm) | W1
(mm) | H
(mm) | H1
(mm) | D
(mm) | D1
(mm) | S1
(mm) | S2
(mm) | | | | SA3-043-37K/45KF | | | | | | | | | | | | SA3-043-45K/55KF | 7 | | | | | | | | | | | SA3-043-55K/75KF | | | | | | | | | | | | SA3-043-75K/90KF | 330.0 | 245.0 | 550.0 | 525.0 | 275.0 | 137.5 | 11.0 | 11.0 | | | | SA3-023-22K/30KF | 1 | | | | | | | | | | | SA3-023-30K/37KF | 7 | | | | | | | | | | | SA3-023-37K/45KF | 1 | | | | | | | | | | Frame E | Frame E | | | | | | | | | | |--------------------|-----------|------------|-----------|------------|-----------|------------|------------|------------|--| | Model type | W
(mm) | W1
(mm) | H
(mm) | H1
(mm) | D
(mm) | D1
(mm) | S1
(mm) | S2
(mm) | | | SA3-043-90K/110KF | | | | | | | | | | | SA3-043-110K/132KF | 2700 | 205.0 | F00.0 | F60.0 | 200.0 | 1275 | 11.0 | 110 | | | SA3-023-45K/55KF | 370.0 | 295.0 | 589.0 | 560.0 | 300.0 | 137.5 | 11.0 | 11.0 | | | SA3-023-55K/75KF | 1 | | | | | | | | | Frame F | Frame F | | | | | | | | | | | |--|-----------|------------|-----------|------------|-----------|------------|------------|------------|------------|--| | Model type | W
(mm) | W1
(mm) | H
(mm) | H1
(mm) | D
(mm) | D1
(mm) | S1
(mm) | S2
(mm) | S3
(mm) | | | SA3-043-132K/160KF
SA3-023-75K/90KF | 420.0 | 340.0 | 800.0 | 770.0 | 300.0 | 145.5 | 13.0 | 25.0 | 13.0 | |